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An implementation of the free-embedding scheme for high-temperature series
generation on the body-centered cubic family of lattices in arbitrary dimension
d is described. Series to order 21 in inverse temperature are tabulated for several
scalar field models, both for the magnetic susceptibility and for the second
moment of the spin correlation function. The critical behavior of a family of
3-dimensional “double Gaussian” models, which interpolate continuously
between the spin-1/2 Ising model and the Gaussian model, is analyzed in detail
away from the Gaussian model limit using confluent inhomogeneous second-
order differential approximants. With our best estimate of the correction-to-
scaling exponent, #=0.5240.03, the leading exponents for the susceptibility
and correlation length for this family are consistent with universality and
are given by y=123740.002 and v=0.630+0.0015, respectively, and
n=2—7/v=0.0359 + 0.0007.

KEY WORDS: Ising model; series generation; series analysis; critical
exponents; universality.

1. INTRODUCTION AND SUMMARY OF RESULTS

Estimates of critical exponents deduced from high-temperature series on
3-dimensional lattices have been puzzling for a number of years. Contrary
to the expectations of renormalization-group theory, there has been
evidence both for the failure of hyperscaling!”’ and the absence of univer-
sality. The latter is suggested by a discrepancy between the “classical”
estimates of the susceptibility exponent y = 1.250 + 0.003® and the correla-

tion length exponent v=0.638"537,%) and the most recent space

! Department of Physics, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
2 Department of Physics, FM-15, University of Washington, Seattle, Washington 98195.

1

0022-4715/90/1000-0001806.00/0 © 1990 Plenum Publishing Corporation



2 Nickel and Rehr

continuum ¢*model estimates.*) These are 7=1241+0.002 and
v=0.6300+0.0015, based on Borel resummation of coupling constant
perturbation expansions, and y=1.2390 + 0.0025 and v=0.6310 + 0.0015,
based on Borel resummation of s-expansion series supplemented by exact
results in two dimensions. However, the numerical arguments for or
against hyperscaling and universality appear to depend on the method used
to analyze series expansions of limited length. Fach method inevitably
builds in particular “function biases” and, as a consequence, yields analysis-
dependent results.® It is therefore hoped that with longer series, less func-
tion-biased analyses might be undertaken which will either confirm, say,
the absence of universality or resolve the apparent discrepancies and show
how they arose from certain biases.

Although the prospects for extending these series for general
3-dimensional lattices are not encouraging, a great simplification in the
high-temperature series generation process is possible for the body-centered
cubic (bee) lattice.® Exploiting this simplification, Nickel reported new
21-term spin-1/2 Ising series for the susceptibility and correlation length at
Cargése in 1980.°” Also reported was a preliminary analysis of these and
corresponding higher-spin-S series which showed that the “classical” expo-
nent estimates were seriously in error and that the new estimates appeared
to be consistent with universality. Since then, series for other models have
been derived and many more analyses''®?! of these bec series have been
reported; ref. 21 contains a recent discussion. Here we finally (!) report the
details of this series derivation, tabulate series coefficients for models we
hope will be of general interest, and present an analysis which in
preliminary stages was reported at Stat Phys XIV,?® Rutgers,® and
APS® meetings.

Our analysis is based on confluent inhomogeneous second-order dif-
ferential approximants which, by allowing for a correction-to-scaling term
in a simple form and an analytic background, can (potentially) yield an
unbiased test of universality. However, in practice we can only obtain the
high precision of about three decimal places for y and v and not quite two
decimal places for the correction-to-scaling exponent 6 by comparing
different models and “forcing” universality by a best-fit procedure. As
opposed to other methods of series analysis which usually focus on a single
thermodynamic quantity, our approach uses both susceptibility and
correlation-length series and makes use of several internal consistency
checks to help reduce the effects of function bias. Our best estimates of the
critical exponents are consistent with (1) a common correction-to-scaling

* See, for example, the discussion of hyperscaling in ref. 5, or compare the analyses by Gaunt
and Sykes'® and Zinn-Justin,"? A review of early work has been compiled by Gaunt.’®
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exponent 6 for a family of models; (2) the same critical temperature for
both the susceptibility and correlation length series for a given model; (3)
a common value of y*, ie., the model parameter at which the leading
correction-to-scaling vanishes; and (4) universality of the subdominant
amplitude ratio. The use of confluent approximants is essential to our
method; Guttmann?® also carried out a differential approximant analysis
without explicitly including a confluent singularity in each approximant
and obtained rather different results. Inhomogeneous approximants have
been found to be particularly important in reducing the overall scatter
of the critical exponent estimates, especially for the &2 series. Such
inhomogeneous approximants automatically incorporate an analytic back-
ground and remove spurious effects of the leading terms in a series. The
effect of the inhomogeneous term on critical exponent estimates is a reduc-
tion of about 0.002 in both y and 2v. Our results are, within error limits,
consistent with other analyses that are also unbiased in their exponent
choices and that explicitly depend on model comparisons.®?’ A common
conclusion is that for the spin-1/2 Ising model, the correction-to-scaling
term, though small, cannot be neglected. On the other hand, our conclusion
is similar to that reached by Zinn-Justin'® and is worth stressing; namely,
that even with the long series now available, any analysis based solely on
the spin-1/2 series cannot predict the presence of a correction-to-scaling
term.*

A summary of this paper in somewhat more detail is as follows. As
mentioned in ref. 5, the evaluation of graph embedding constants, which
for most lattices is the most time-consuming part of the series calculation,
becomes almost trivial on the family® of d-dimensional lattices for which
the interactions couple fields bilinearly on lattice sites separated by any of
the 24 vector displacements (%1, +1,.., £1). Another consequence of
this factorization is that the high-temperature susceptibility series can be

written as .
W(K)=) =K} (H (uzf)m')

n=0n! Y imi=n+1 \Ni=1
x Y [E({m:})]* W ({m}) (1.1)

*Both Mellin transform™? and 3-point fits!9 fail to find significant corrections for the
spin-1/2 case. The trend of the D log Padé estimates® is suggestive of a correction, but of
course each approximant specifically excludes such a term. Finally, for spin 1/2, second-
order differential approximants®® fit just as easily with =7, i.e.,, an analytic background,
as with 6~ 0.5.

5 This “bee family” includes a pair of sites (d=0), the linear chain (d= 1), the simple quad-
ratic lattice (d=2), the bee (4= 3), and higher-dimensional generalizations. The basis for the
simplification is a factorizability described in Section 2, which reduces the d-dimensional
embedding calculation to that in one dimension.



a4 Nickel and Rehr

and the second moment of the 2-point correlations as

M= 3 k3] |

Sim=n+1Li=1

x Y LE({m )1 Fy({m}) Wo({m;}) (1.2)

where K is the inverse temperature and {u,,;}, the cumulant moments of the
single-site field distribution [see Eqs. (2.1) and (2.6)], are the physical
model-dependent parameters; the dimension d appears only as an expo-
nent, while the remaining quantities are integer constants that can be given
a graphical interpretation. In particular, the m, are the number of vertices
of order 2i in 2-rooted graphs of type g; E,({m;}) is a one-dimensional
embedding constant or zeroth moment in root separation, while F,({m;,})
is the second moment in root separation. W, ({m,}) is a sum of
symmetry-related weight factors of all graphs with the same embedding
constant moments E, and F,. A few technical details of the computer
program that determines these integer constants through order n=21 are
also described in Section 2.

The data for y and M, for the order K*! calculation comprise nearly
100,000 entries of the constants E,, F,, and W, and can be conveniently
transferred only via magnetic tape. To make these results more directly
accessible, we specialize the general scalar models, characterized by the set
of cumulant moments {u,;}, to models in which the single-site field
distribution is parametrized by a single variable y. The series for y and M,
can then be written as

WK y)=Y K'4,(y),  MyK, y)=3 K"B,(y) (1.3)

Furthermore, a number of physically interesting models exist for which the
A,(y) and B,(y) are expressible as polynomials of order approximately n.
Such models, which include spin-S Ising, Blume-Capel,®® Klauder,®® and
double-Gaussian®® or range,?” are described in Section 3 and a few
representative tables of coefficients of double power series in K and y are
listed in the Appendix. Readers interested in other models should contact
the authors.

With the much longer series now available one can reexamine the pre-
vious Ising model critical exponent estimates using a number of methods
ranging from such commonly used approaches as the ratio and D log Padé
to the more recently developed second-order differential approximants®®
and (two-variable) partial differential approximants.'®?*) Each method
has its relative merits. For example, the conventional D log Pad¢ is easy to
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apply and directly separates the effects of unphysical singularities from the
critical singularities of physical interest. Unfortunately, the method assumes
the absence of correction-to-scaling terms discussed by Wegner, *” and this
can lead to systematic errors in the leading critical exponent estimates.
Exponents from D log Padé approximants®® to 21-term spin-S Ising series
are spin dependent and taken at face value suggest the absence of univer-
sality. On the other hand, the two-variable partial differential approximant
method!* as applied to the double-Gaussian and Klauder series assumes
the presence of a single correction-to-scaling term in the scaling form
predicted by renormalization-group theory.®® Since this method uses all
the information in each two-variable series simultaneously, it will probably
yield the best possible exponent estimates if the renormalization-group
hypothesis is correct and if higher-order corrections are sufficiently small.
Of course, it is conceivable that the observed scatter in those estimates*?
is a response to model-dependent exponents, and thus in a sense the
method is not a test of universality. The partial differential approximant
method of ref. 18 is based on the same scaling assumption, but uses more
limited information, namely two single-variable series y(K) and Jy(K)/dy
for a given model parameter y. Exponent estimates have also been made*®
using inhomogencous first-order differential approximants and deter-
mining, self-consistently, a value yp* at which the leading nonanalytic
corrections-to-scaling in y vanish. Although not a test of universality, the
resulting exponents have been used to check the validity of hyperscaling.

In the present paper we concentrate on analysis of the double-
Gaussian series by single-variable confluent inhomogeneous second-order
differential approximants. This simple generalization of the D log Padé
method assumes that a single correction-to-scaling term is important. Also,
as described in Section 4, y, M,, and the correlation length squared
&% oc M,/y are assumed to have critical behavior

K\ K\ 9
AF<1-K> [1+ap<1—z> ]+BF, K~K,

K 1—af
CF<1+E—> +DF’ Kz_KC

F(K)~ (1.4)

in the neighborhood of the ferromagnetic and antiferromagnetic critical
points K= + K_.®

® The second-order inhomogeneous differential approximants exhibit critical behavior of the
form (1.4), in which the coefficients A, ap, and B (Cr and D) are regular functions of X
at K. (—~K,). While it is not likely that the background term B contains the leading correc-
tions beyond the (1 — K/K,)? term, its inclusion tends to give more stable estimates for y,
and 6. This background term may also be the best polynomial approximation to additional
important but slowly varying confluent corrections.
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In principle one could determine without bias, other than the implicit
function bias of a given method, estimates of K., yr, and 8, for many dif-
ferent models and then reasonably decide whether universality is satisfied;
i.e., whether the 7y, are model independent and the 0, are both model and
function independent. We find, not too surprisingly,®"’ that such double
exponential fitting is very unstable and that even longer series will be
needed before one can hope to succeed in verifying universality with this
naive approach. Thus, instead, we have adopted the procedure of fixing 0
at a few discrete values and determining only K. and y,. We find that there
is a “best” value for 0y=60=0.52 +0.03, for which the exponents y, are
most constant over a wide range of y parameter values in the double-
Gaussian model. In this limited sense we do verify universality and
findy, =y = 1.23740.002, y» = 2v = 1.260+0.003, and n = 2—y/v =
0.0359 4 0.0007. It is not clear how much function bias remains in these
results. While slightly lower than some estimates, our present exponents are
consistent, within error bounds, with other analyses of the double-
Gaussian model; e.g., y=12385+00015 from ref 13, y=1237+0.003
from ref 14, y=1.2378 +0.0012 from ref. 18 (we have doubled those
authors’ one-standard-deviation error estimates), and y = 1.2395 4+ 0.0004
from ref. 19. Similarly, our results for v are also consistent with other
analyses; e.g., v=0.632 +0.001 from ref. 13, v=0.630 4+ 0.003 from ref. 14,
and v=0.6312 £ 0.0006 from ref. 18. Our value 1 —¢a,=0.89 +0.02 is con-
sistent with the hyperscaling relation 3v =2 —«, but is too uncertain to be
considered a significant test. By comparison, the inhomogeneous differential
approximants of ref 19 yield 1 — «, = 0.895+0.007, for which the
hyperscaling relation is satisfied to a precision of +0.01.

There is now little indication of an absence of universality or of a
significant discrepancy between high-temperature series and field-theoretic
results. Although earlier continuum ¢*-model estimates, y = 1.241 + 0.002
and #=0.0314+0.004, were only marginally in agreement with the lattice
results, the latest estimates™ derived from e-expansions and exact results,
y=1.2390+0.0025 and #=2-—y/v=0.0365+0.003, are now consistent,
within error limits. Additional support for universality is provided by
studies of leading amplitude ratios.'®) Possible evidence for a lack of
universality is that the correction-to-scaling amplitude ratio agx/a, is
weakly model dependent and near its maximum value a./a,~1.7 at the
spin-1/2 Ising limit. This ratio is some 25 % larger than the value of ~1.3
estimated®? for the continuum model; however, given the latest continuum
model results, the value 1.3 is now suspect. Both the large magnitude
and model dependence of ax/a, are consistent with those found by
Nickel and Dixon”* based on Roskie’s!? quadratic mapping. The



Series for Scalar-Field Lattice Models 7

estimate @,/a,~ 1.4240.14, obtained by Zinn-Justin"'” by a modified
ratio method, is somewhat lower.

Overall, however, we believe that the analyses based on these new
high-temperature series favor universality. The series are probably still too
short to capture the true asymptotic behavior of the correction-to-scaling
terms, especially since, as already mentioned, these cannot yet be predicted
for the spin-1/2 Ising model treated in isolation. In view of this, we discuss
in Section 5 considerations important for an extension of the present
calculation to generate additional series terms.

2. SERIES GENERATION

The models considered in this paper are defined by the bee family
partition functions

Z=T1| [do D explh) [ exp (KL 4, 1)

where the sites r; are either all even (2/, 2m,...) or all odd (2/+ 1, 2m + 1,...)
integer translations from the origin. The interaction couples “nearest”
neighbor scalar fields ¢,, ¢, on sites separated by (+1, +1,.., £1). The
2-point correlation function in zero magnetic field 4; is

2

oh, oh,

(¢:¢;>= Inz (2.2)

{hi=0}

and its Fourier transform is the propagator or ¢-dependent susceptibility
G(g, K)=1q=D). {¢:¢,> explig- (r;—1,)] (23)
j

Of particular interest is the uniform susceptibility y =y,_, and the
second moment of the spin correlations

My= 22| =¥ (= x)2 (4.8, (24)

B aqi qg=0 J
from which one can define the correlation length ¢ via
&= M,/2y (2.5)

Different models are distinguished by the single-site field distribution
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function f(¢*) or equivalently by its cumulant moments u,,, which are
determined from the generating function,

exp [Z (%;? hﬂ - j dé f(¢*)e" (2.6)

A number of explicit choices for f(¢?) are discussed in Section 3.

The coefficients of the expansion of y, in powers of K can be represen-
ted as a graphical sum. Each graph consists of vertices (lattice sites} con-
nected by bonds [“nearest” neighbor vectors (+1, +1,.., +1)], each of
which is associated with a factor K. For the zero-magnetic-field expansion
considered here, the number of bonds leaving each vertex, which is the
order of the vertex, must be even. For this particular counting purpose an
“external” bond is considered to be associated with each root vertex i and
J in the average {¢;¢;> in (2.2). Also, for the free embedding scheme
employed here, multiple bonds between pairs of vertices are allowed and
distinct vertices in a graph are not restricted to correspond to distinct sites
on the lattice. For a complete description of this scheme we refer the reader
to the excellent article by Wortis. %)

The numerical contribution of a particular graph is the product of a
number of factors. Besides the factor K" associated with the n internal
bonds in the graph, a cumulant average p,,, is associated with each vertex
of order 2m. Dividing these factors is the symmetry number of the graph,
which is the number of distinct ways the internal bonds and vertices can be
labeled and leave the graph topologically unchanged. Finally, one must
multiply by the embedding constant, which is the total number of ways the
vertices of the graph can be identified with lattice sites.

For example, the graphs shown in Figs. 1a and 1b contribute to y, the
values

1 1 .
Aria1= Klgﬂgﬂgﬂs 1t N5 z VisVig---expliq- (r;—r3)] (2.7a)
315102 et

1\3/1 ;
rm=K*uiid(37) (3) T vaveoliom-r] @)
: £2,T10

.....

where the V; are the “nearest” neighbor interactions, that is, V=1 if
r,—r;=(+£1,., £1) and zero otherwise. The 3! and 5! in Eq. (2.7)
correspond to the possible permutations of the multiple bonds. The factor
1/2 in (2.7a) is the result of the vertex pair 7, 8 — 9, 10 relabeling symmetry,
while in (2.7b) it is the 4 — 6 relabeling.

The presence of multiple bonds does not affect the lattice site sums,
since V?]: V. Furthermore, since all site Jocations are unrestricted, site
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Fig. 1. Two order-K'® contributions to y. The open circles labeled 1 and 2 are the roots,
each solid line is a “nearest” neighbor bond associated with a factor K, and the dashed lines
are the fictitious external bonds. All vertices are necessarily of even valence; all loops are of
even length.

sums can also be evaluated simply in Fourier space. Using the inverse
transform V;={d‘% V, exp[ —iq- (r;—r,)](2n)", where

V,=2%osq,cosq,--- (2.8)

is the Fourier transform of the “nearest” neighbor interaction ¥V, we
obtain for the sums in both (2.7a) and (2.7b) the same three-loop integral

d, r d%
L (- =V [ Gyt Tyt VoV s

d*, qs3
(2n)

(2.9)

The form for V_ in Eq. (2.8) is special to the bec family; because of its
factorizability, the expression (2.9) can be rewritten as a product [], E
of d one-dimensional embedding constants, of the form

(2cos q,)* (2 cos q,)°

rdq, > dg,
E,=2cosgq, ———fo

o 27 2n

2n dq
x2cos(g1—g2+4.) | 57 (2cos )

=108 + 108 cos 2¢, (2.10)

where ¢, is one of the components of q. The evaluation of such one-dimen-
sional embedding constants is usually most easily carried out in position
space, but in any case is no longer the most time-consuming part of the
graph calculation. This is the crucial feature that has made the present
order-K?! calculation possible.
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Quite generally, the contribution of a particular graph to y, is of the
two possible forms

1 2k
X[gJ:EK"H(ﬂzm)"'"H<Z€k{ o082 })w (2.11)

k cos(Zk + 1)q,

A complete description of this contribution is contained in the two linear
and integer arrays c,, and e, and the weight w, which, because of the factor
nl, is also an integer. Graphs which are described by the same charac-
teristic arrays c,, and e, can be combined by adding together their respec-
tive weights w. This leads to a very considerable reduction of the number
of tabular entries. Further reduction is possible if we specialize to the
uniform susceptibility or the second moment; the array ¢, can then be com-
bined into the single number E, as in (1.1) or the pair £, and F, as in (1.2).
This reduction in storage requirements is the second most important
feature that has made possible the present calculation.

In the remainder of this section we will describe a few technical details
of the graph generation program. We have used the 2-point renormaliza-
tion scheme as outlined by Wortis,®* with one basic difference: that we
never explicitly specify the field distribution function f(4?) and hence the
moments {u,,}. Instead, the equivalent information is always stored in
arrays like ¢,, in (2.11) which specify the number of vertices of various
orders.

The program divides roughly into five parts. First, a table of elemen-
tary 2-rooted, 2-irreducible graphs is generated. Second, the bonds in these
graphs are replaced in all possible ways by 2-rooted, 1-irreducible segments
to produce a table of elementary 2-rooted, l-irreducible contributions.
Third, another program segment generates 2-rooted nodal and ladder con-
tributions which, when combined with the elementary contributions, yields
a table of all 2-rooted, 1-irreducible contributions. Fourth, the two roots
are collapsed to a single root to generate vertex insertions. These are self-
consistently iterated to generate a complete table of 1-rooted contributions
with bare vertices. Fifth, the 1-root contributions are used as replacements
for the vertices in the 2-rooted, l-irreducible table to generate all 2-rooted
contributions with bare vertices. These last two tables constitute the infor-
mation from which y and M, can be obtained via (1.1) and (1.2).

The description of the entire program would be too long and not par-
ticularly instructive. Instead, we outline below the third segment to give a
flavor of the data-handling techniques we have employed. Some additional
remarks may be found in Section 5, where we discuss the prospects for a
higher-order calculation.

Assume that a table of low-order elementary, nodal, and ladder con-
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tributions exists. A particular entry contains the following information
elements: (1) order n; (2) type: elementary, nodal, or ladder; (3) whether
the embedding constant array represents an expansion in cos2kq or
cos(2k + 1)g [cf. Eq. (2.11)]; (4) whether the roots are of odd order or
even order; (5) orders v, and v, of the two roots; (6) array in which ele-
ment ¢, is the number of vertices exclusive of the roots of order 2m; (7)
number of elements in embedding constant array e, ; (8) greatest common
factor f of the array elements e,; and (9) pointer to another table giving
location of the reduced array e./f. For ladder entries the following addi-
tional information is stored: (10) pointer to the same table giving location
of the most recently added rung; and (11) the number of times / this par-
ticular rung is present in the ladder. The final piece of information is the
weight w, which, because it is an integer of order #!, is stored in four 32-bit
words as an IBM quadruple-precision real. All the remaining information
is packed into additional sets of four 32-bit words.

This packing onto a fixed length of 32 bytes/entry considerably sim-
plifies the data handling. The variable-length entries are restricted entirely
to the table of reduced embedding constant arrays e,/f, but it is a relatively
short table and its handling is not a problem. Note also that packing leads
in some cases to greater efficiency in the use of the data. For example, the
entire array c,, fits in a single 32-bit word and the addition of two arrays
¢,, and ¢, becomes the addition of two single words. Since addition is the
only operation performed on the c,, arrays in this particular program
segment, those arrays need never be unpacked.

The rules for generating a new graph C from two graphs A and B are
simple. A ladder C can be generated from all possible 4 and B that have
the same information element 3, except that, to avoid overcounting, both
may not simultaneously be ladders themselves. Also, again to avoid over-
counting, the rungs are added in a particular order; if B is considered as
the new rung to be added to A, it may not come from any table location
beyond that of the previously added rung (see information element 10). If
it comes from the same location, / is incremented by unity; otherwise, / is
set equal unity (see information element 11). Then

n(C)=n(A)+ n(B)
v, R(C)=vp x(A4) + v, #(B)
en(CYy=c,(A)+c,(B)
ex(C)=ex(A) - ex(B)

_(n(C)
w(C)= (n(A)) w(A) w(B)/I
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The binomial coefficient in the expression for the new weight arises because
of our decision to include a factor of n! in (2.11); dividing the weight by
! generates the correct /! symmetry factor associated with / identical rungs
in the ladder. Similarly, a nodal contribution C can be generated from all
A and B that have the same information element 4, except that both may
not be nodal. Now

n(C)=n(d)+n(B), v (C)=v (4),  vr(Cy=vr(B)
cn(C)=cp(A) + ¢, (B)+ 52m,uR(A)+vL(B)

(n(C)

MO={ 4

) w(A) w(B)

The new embedding constant e, (C} is a convolution of the two arrays,
e.(A4) and e, (B); that is, the new array in Fourier space representation is
a simple product of the old arrays.

As new contributions are generated, a search is initiated through the
embedding constant array table for the reduced array ¢, /f. If such an entry
is found, the pointer to this old entry is recorded as information element
9; otherwise, a new entry is made and a new pointer is generated first. A
search based on the B-tree algorithm described by Knuth®** is then
initiated through the table of ladder or nodal graphs. If an entry is found
whose four 32-bit word descriptor is identical to the descriptor of the new
contribution, the new weight w is added to the already stored weight.
Otherwise, a new entry is established. Note that what is stored in this
2-rooted, 1l-irreducible table of elementary, ladder, and nodal contributions
is not necessarily individual graphs, but, rather, sums of graphs whose
description elements 1-11 given above are the same. Even with this very
significant packing, the cumulative number of entries in the table through
order K*' is nearly 3,000,000 and requires three 40-megabyte tapes for
storage.

We conclude by reviewing the most important features of the present
calculation. First, it is not important that free embedding counts are larger
than the counts in either the weak or the strong embedding scheme. What
is crucial, and yet was not recognized in the Wortis article,*® is that for
the bee family of lattices the free embedding count factorizes and each
graph embedding constant reduces to a one-dimensional calculation. Also,
each graph that contributes in dimension d= 3, say, also contributes in any
other dimension d. Thus, the known d=1 and d=2 results serve as com-
plete sum rule checks not available in the weak and strong embedding
schemes. Second, although renormalization in the free embedding scheme
replaces graphical complexity by algebraic complexity, it was recognized by
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Wortis and co-workers®* **) that a significant advantage can still be gained
by renormalization. That is, if the complete description of a graph as con-
tained, say, in the adjacency matrix®® is replaced by the limited algebraic
information as given in 1-11 above, then many graphs may combine into
a single algebraic entry. Savings in both handling time and storage increase
dramatically with the order of the caiculation.

At the 1-point and 2-point renormalization level used here, only
elementary 2-rooted, 2-irreducible graphs need be generated and stored as
graphs. For orders 7, 9, 11, 13, 15, 17, 19, and 21 the cumulative total
number of elementary graphs required is approximately 1, 1, 6, 26, 145,
917, 6931, and 60,237. Extrapolation suggests that about 7 x 10° graphs
would be required for an order-K>° calculation: such a list is quite
manageable in terms of storage requirements. However, to generate this list
is nontrivial by present techniques and will be discussed briefly in Sec-
tion 5. We now believe this is a more fundamental barrier to any extension
of the series for y and M, than the problem of sorting and storing the
1-irreducible contributions as stated at Cargese.*’

3. MODELS

The models discussed in this paper are distinguished by the scalar-field
distribution function f(¢?) in (2.1). In all our work below we choose the
width of this distribution so that the second (cumulant) moment is unity;
ie.,

o= [ db 16 | [ do 119 =1 (1)

With this normalization our definitions of certain models differ from the
conventional ones by a rescaling of the inverse temperature parameter K.

3.1. Spin-S Ising Model

Of the many possible simple scalar models, probably the best known
is the spin-S Ising model in which 3-dimensional quantum spins interact
via the anisotropic coupling JS7S7. This model is equivalent to the scalar
model (2.1) with the choice

3

~ 555D (32)

@)= osg+amy),
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From the logarithmic derivative of the generating function (2.6) we easily
derive

2n—1

———[(25+ 1) /y coth[(28+ 1) /y h]—/y coth /v i,

Hon = dh
(3.3)

which, by use of (25+ 1)*=1+3/y and the known expansion for coth x,
we can also rewrite entirely in terms of the parameter y as

nan

Hon =[G+ p)" = Y"1 —— (34)

where the B,, are the Bernoulli numbers. Because of the particular polyno-
mial form of the moments in (3.4), the expressions (1.1) and (1.2) for y and
M, reduce to the double power series of essentially triangular form

n Am
(K, y)=Ag+ Y K" Y —5y"!
n=1 m=1 :
My(K, y)= Y K" Z —”, (3.5)

n=1

Because the coefficients A/ and B/ for the spin-S models are not integers
(though they could be expressed as rational fractions), they will not be
presented here. Readers interested in these tables should consult the
authors. However, the single variable series for S=1/2, 1, 2, and oo in
dimensions 2 and 3 are given in the Appendix (Table I).

3.2. Blume-Capel Model

Another simple model that has been discussed in the literature and is
useful for the study of tricritical behavior in addition to ordinary critical
behavior is the Blume—Capel, or 3-state, model.’*® The distribution func-
tion with our normalization (3.1) is

(@) =0(p+/y)+2(y— 1) 8(¢) + (¢ — /) (3.6)

and its cumulant moments are given by

d2n1[ Jysinh /v h :| (3.7)
h=0

Hop = P
" dh 'L y—1+cosh/yh
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Explicit power series division in (3.7) shows that the u,, for n>1 can be
generated recursively from the relation

nt n—1
— pn—1__ n—1—m 3.8
Hon= ,El y (2m—1> Hom (3.8)

Because the p,, in (3.8) are of the same polynomial form as in (3.4), the
Blume-Capel y and M, series are also expressible in the triangular form
(3.5). The coefficients 47" and B? for this model in both d=2 and d=3 are
listed in the Appendix (Table II). Except for the A= 1 entry in the tables
for y, m varies from 1 to n for fixed # in each block of n values. Two checks
are possible in that y =1 is the S=1/2 model, y=3/2 is S=1. The value
y=2 yields the /=2 “loop model” mentioned most recently by Zinn-
Justin.”” In the neighborhood of some critical value K=K,(y), y=y,> 2,
the model is expected to display tricritical behavior. In the future one might
attempt both to locate this point and deduce the expected logarithmic
corrections that modify the classical (mean field) behavior in d=3.
However for the present we believe it is more useful to deal with simpler
models in which the mean-field point is purely Gaussian and its location is
exactly known.

3.3. Ising-Gaussian Interpolation Models

One simple model that can interpolate between S=1/2 Ising and
Gaussian behavior is a model of classical, fixed-length, y-dimensional spins,
again coupled anisotropically via JS7S7. In this case the equivalent scalar
distribution is

(y=#) D2 gl<y
0, ¢l >y

which in the limit y — 1 becomes the S =1/2 Ising distribution and in the
limit y— oo becomes the Gaussian f oc exp(—¢?/2). In the interval
1< y<oo, the model passes through the S=co Ising point at y=3.
However, the power moments of the distribution, m,,={ f(¢°)¢>" dg,
which can be determined recursively from

G (39)

y(2n+1)

o (3.10)

My, 2=

are not polynomials in y and thus a simple triangular expansion as in
(3.5) is not possible. Similarly, the ¢* model'” defined by f(¢4?) oc
explag? — B(a)$*], B(x) >0, does not have a triangular expansion.

822/61/1-2-2
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We have not bothered to tabulate single variable series for these
models, but have instead concentrated on two other models which do have
triangular expansions similar to (3.5). These models, the Klauder®® and
double-Gaussian,®® or range,®” also allow interpolation between S=1/2
Ising and Gaussian. A possible limitation is that they are not defined for
temperatures below some critical value, ie., K> K*(y). However, as this
temperature is below the interesting second-order phase transition line
K=K, (y), we feel they are useful nonetheless and hope that our work will
trigger further investigations into their properties.

3.4. Klauder Model
The Klauder model®® is defined by the distribution
F(¢2) =]/~ = #20 -1 (3.11)
provided that

1
K<K*(y)=m

On the interval 0< y<1 the model interpolates between Gaussian and
S'=1/2 Ising. Since the moments satisfy the recursion relations

(3.12)

My, 2= {20+ 1—=2ny)m,, (3.13)

the cumulant moments y,, are again polynomials of order n ~1 as in (3.4).
It is, however, convenient to rewrite the expansion for y and M, for the
model as

o n
(K, y)=A5+ Y. oK Y, Ay oyt
me=1

met (3.14)

MoK, )= ¥, K" 3 By
n=1"" m=1
For d=13 the coefficients 4} and B! are integers and are listed in Table III
of the Appendix with precisely the same ordering as used for the
Blume—Capel model series.

Some properties of the Klauder model in the vicinity of the Gaussian
line y =0 can be determined fairly directly, as we illustrate below specifi-
cally for d=3. Note that at y=0 all u,, for n>1 vanish and the
propagator (2.3) is given by the free-field expression

Golq, K)=(1 —8Kcos g, cos g, cos g,) "' (3.15)
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Corrections to this result can be derived systematically if we treat y as a
small parameter. To obtain a complete description near the critical point
the full machinery of renormalized perturbation theory should be used, but
here we will only evaluate the leading y dependence of the critical line
K (), for which lowest order elementary perturbation theory is adequate.
For small y the cumulant moments are given by

Hani2®(=2)"nly, nz0 (3.16)

Then the propagator to leading order in y is modified by a self-energy
which is a sum of terms, each corresponding to a single vertex insert of
order greater than two. Attached to the vertex of order 2n+ 2 are n closed
loops with symmetry factor 2"n!. Each loop contributes a factor given by
the momentum integral

d3
1K) = | 555 TGo(g: K) =11 (3.17)

and so the complete self-energy contribution is

< Motz yI(K)
= [IK)]"= — 3.18
El 2"nl L1(K)] 1+ I(K) (3.18)
The susceptibility is
I(K) \~!
G(q, K)z(l——8Kcos g COSs ¢, CO8 qz+—1y:(7(l)<—)> (3.19)

and the critical K (y) is determined by the divergence of G(0, K). To
leading order in y,

L)
BRO)* 1+ 10 (3.20)

Numerically, 1(1/8) = (4/z*) K*(1/2) — 1~ 0.3982..., where here K(m) is the
complete elliptic integral.*® Note that the instability line as given by (3.12)
is, to leading order in y,

BK*(y)~ 1+ y (3.21)

and thus for y>0, K, <K* For y<0, K,>K* and Ising-like critical
behavior cannot be observed in this regime. It is for this reason that we
believe the model is not useful for the purpose originally envisioned by
Klauder.?®
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3.5. Double-Gaussian Model

The second very useful model with a triangular expansion is the
double-Gaussian model defined by

f(¢2)=exp[~M]+exp[ (6= \/_)] (3.22)

21—y) 21

provided the restriction (3.12) is again fulfilled. Also,” just as for the
Klauder model, this model interpolates between Gaussian and S=1/2
Ising as y varies between 0 and 1. However, somewhat surprisingly, this
model has an analytic continuation to the regime y > 1, which can be inter-
preted physically and which we call the range model. The cumulant
moments for the double-Gaussian model are simply related to the S=1/2
Ising moments pu$) = (4" — 1)4"B,,/(2n), given in (3.4),

p =1, n=1
3.23
Koy = {y ﬂ(zln), I’l>1 ( )

and the expressions (1.1) and (1.2) for y and M, can therefore be written

HK ) =43+ T K (4l 3 22 y)
,: (3.24)
nt?

n=1
m )

The integer coefficients 47 and B’ are listed in Table IV of the Appendix
for d=3. Within each biock of n+ 1 entries, m varies from 0 to n. Note
that a 3-way sum rule check is possible between Blume—Capel, Klauder,
and double-Gaussian tables by setting y = 1.

An analysis similar to that described for the Klauder model can be
used to determine the leading behavior of the critical line K (y). In this
case, (3.23) shows directly that the leading self-energy corrections involve
only the fourth-order vertex insert at order y* and the sixth-order vertex
insert at order y*. We find

M,(K, y)= Y K" (BO zn:

n=1

G(q, K)~ {1 —8Kcos g, cos g, cos ¢, + y’I(K) - 2y°[I(K)}*}~' (3.25)

7 One can show that both models are members of a class of one-parameter models with tri-
angular expansions for the series coefficients, all of which interpolate continuously between
Ising and Gaussian limits. The moment generating functions G(h)={ f(¢*) exp(—hg) d
for this class satisfy the second-order differential equation G” ~ (1 + A)(1 — y)hG' —
[1—A(t~y)?h*]G=0, with 0< i< 1. The value =0 corresponds to the Klauder model
and 2 =1 to the double-Gaussian model.
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which diverges at ¢ =0 when K= K, (y), where
8K.(») =1+ y*(3)—2°[1()]° (3.26)
Again, for y>0, K, < K*, and so it is consistent to identify K.(y) as the

critical line.

3.6. Range Model

As observed by Baker and Bishop,” the partition function (2.1) in
uniform magnetic field 4;= h with the double-Gaussian distribution (3.22)
can be written in the Ising-like form of a sum over discrete “spin” values:

Zoo(K, 3, h)
= ZH} H fdfzﬁ exp {KZ b — Z ¢’2(15 /Y +h Z ¢} (3.27)
or
Zoo(K, y, h)
=700 Zil}UJd¢,CXP{——Z¢M,,¢
3ot
where

d% ) 1
M,-jszquxp[lq-(r,-—rj)], My=r—-KV, (329)
with ¥ the “nearest” neighbor interaction (2.8). The prefactor Z,(y) in
(3.28) does not depend on the field # and hence will not enter into the
calculation of the susceptibility to be discussed below. The integration over
the Gaussian field variables ¢, is accomplished by first shifting ¢, to
$+3; M; [h+s,y'/(1— p)], where the inverse matrix M

d
-1
My =| R

=(1—y)5ij+K(1_Y)2

M {expliq- (r,— 1)1}

J(Wl_ Ry el tn)l 330)
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We obtain

Zo(K. y, M)=2, ). eXp{%Z<h+%>

{si= 1} ij
M h+M (3.31)
i 1__y

and the argument of the exponential in (3.31) can be simplified, with the
use of the result ", M ' =(1— y)/[1—-29K(1—y)], to

{2(1—y>2,sz'M"f' YT TG

1 N1 -y) }

21+ 2°K(1 - y) (3:32)

where N is the number of sites in the lattice. Note also that the diagonal
term (1—y)d; in (3.30) will contribute a constant to the quadratic
s; M 's;, which can be absorbed into the prefactor in (3.31) and change it
to Z,(K, y).

Let us now define an S'=1/2 Ising model with the “long”-range inter-
action K'J;(p), where

d* V
11(0)= | G o xelia- =) (333)

Provided |p| <279 the interactions are exponentially damped with dis-
tance; in the coordinate direction x, say, J,-j~e""'f/’1, where the range A is
the solution of cosh(1/4)=2"%|p|. For K’ >0, which we consider here, the
“nearest” neighbor interaction is always ferromagnetic, as indeed are all
interactions between a spin at the origin and a spin on the odd lattice sites
21+ 1, 2m+ 1,..). However, the interactions between spins at the origin
and even lattice sites (2/, 2m,...) are only ferromagnetic for p>0; for p <0
these interactions inhibit ferromagnetic ordering. But since the total inter-
action ¥, J,;=2%(1—2%) is always ferromagnetic, the model is only an
example of a partially frustrated ferromagnet in the regime p < 0. The parti-
tion function for this model, which we call the range model, is defined as

1
Ze(K,p, W)=Y exp {5 K'Y sJ;(p)s;+h' Y s,} (3.34)
{si= 1} 7 i

ij i

and on comparing (3.34) with (3.31) and (3.32) we find

In Zypo(K, y, h)=1In Ze(Ky, K(1— y), /y h/[1—2°K(1 — y)])
+ %th(l —y)/[1- 2"K(1 -y 1+In Z4(K, y) (3.35)
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That is, except for some trivial additive functions, the double-Gaussian and
range model free energies are equal, provided we make the parameter iden-
tifications

Jyh
- = _ [, ‘AL —— . 6
K' =Ky, p=K(1—y), h T 29K(1 = y) (3.36)

By differentiating (3.35) twice with respect to field, we find

y -y
= y 3.37
06 =TT 27kl — » P R T T 29K(1— ) (3.37)
which implies that y; has the expansion
n R:’l
w(K y)=1+ 3 K" Z m— (3.38)

n=1

The coefficients R} are given in terms of the coefficients 47 of the double-
Gaussian expansion (3.24) by

Ry =270, + A7 =29 A7 —mART)
+ 2% A7, = 2mAT )+ m(m— 1) AT} (3.39)

with the proviso that the A% on the right-hand side are set to zero
whenever /<1 or k<1 or k>1

As stressed above, the range model analytically continues the double-
Gaussian model to the region y>1 provided that (y—1)K<2~% No
analysis of the series (3.38) have been performed to date, but an estimate
of the critical line K_.(y) has been obtained for d=3 by a crude least-
squares fit to double-Gaussian model approximants in the range
0.5 < y < 1. Our approximation is

K. '(y)~ 8 —3.05602)2 + 2.96137y% — 2.5771y* + 1.274y5 — 0.248y5  (3.40)

The coefficients of y* and y* were not fixed in the fit and yet are within 4 %
and 14 %, respectively of the exact values given in (3.26). The estimate
(3.40) intersects the model boundary K~*=8(y—1) at yx~ 1.6, and thus
critical behavior over the wide range 1 < y < 1.6 remains to be explored by
single-variable series analysis. On the other hand, since Chen et al.'*) could
clearly identify only a single Ising-like multicritical point in the range
0<y<18 for the double-Gaussian model, universality of critical
exponents is to be expected.
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4. DOUBLE-GAUSSIAN SERIES ANALYSIS

The analysis described in this section is based on the method of con-
fluent inhomogeneous second-order differential equations discussed by
Rehr ef al.®® TIts utility lies in the fact that it may lead to a significant test
of the universality hypothesis. As discussed in Sec. 1, the method biases the
unknown functions of interest to have the appropriate leading critical
behavior (1.4) which, although not of the scaling form discussed by
Wegner, ®” should be adequate, provided higher order terms in (K, — K)™
and other corrections proportional to (K,—K)%, #,>0, are small or
can be incorporated into the analytical factors 4 (K) and ar(K) or an
“effective” background B (K).

We have analyzed in detail the three-dimensional double-Gaussian
model discussed in Sec. 3, which we believe is typical of models that inter-
polate between spin-1/2 Ising and Gaussian limits. Of course, we
investigate the model only at a discrete set of parameter values. These are
chosen so that the width of each Gaussian in the distribution (3.22) is an
integer multiple of 0.05, ie.,

w=1-y=005n (4.1)

We could only successfully determine approximants with the critical
behavior (1.4) in the range 0 < o < 0.70; presumably for larger w the higher
order terms (K, — K)™ or other confluent corrections are so large that the
fact that (1.4) is not of scaling form is significant. If 8 =0.5 exactly, (1.4)
would in principle contain such terms. Also, because the double exponential
fitting problem is so unstable, we limited ourselves to the biased problem
in which 8= is fixed in (1.4). If a common 6 can be found for which the
yr are independent of w, then, in a limited sense, we will have verified one
aspect of universality.

The approximations to y, M,, and &* oc M,/y which have the con-
fluent asymptotic critical behavior (1.4) are determined as the solutions of
the second-order differential equation

[Q:(K) Dy + @:(K) Dy + Qo(K) ] F(K) = P(K) (4.2)

where the Q,(K) and P(K) are polynomials in K with Q,(K) and Q,(K)
forced to take the factorizable form

0:(K)= (K.~ K) O1(K)  Ox(K)=(K.—K)* (K. +K) 0»(K) (43)

The D; in Eq. (4.2) are differential operators in K of order i, and the coef-
ficients in the polynomials Q;(K) and P(K) are fit so that (4.2} is satisfied
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as a power series to some order K. In addition to the Rehr e al.®® choice
for the differential operators

d

DlzKE( D,=D? (4.4)
we have used others, such as
d {D%
D =— D,= (4.5)
' dK 27K D?

Finally, we have restricted our choice of approximants to those in which
the degrees of the Q,(K) are roughly comparable. The essential difference
between our differential approximants and those of Guttmann®® is the
inclusion of the constraints in Eq. (4.3). Without these constraints, the
solution of Eq. (4.2) generally consists of a single power-law singularity
together with analytic factors and background terms, i.e., a solution which
ignores non-analytic confluent singularities.

The numerical procedure for determining the critical constants in (1.4)
is straightforward. For fixed K, in (4.3) the remaining coefficients in Q; and
P are obtained from the solution of a set of linear equations. Solutions in
which the function Q,(K) has zeros in the disk |K| < K, or near K, are con-
sidered “defective” and ignored. Knowledge of the polynomials Q;(K) suf-
fices to determine y, and 6 directly as the solutions of a quadratic indicial
equation.®® As already observed for the spin-S Ising model,® very
reproducible correlations between vy, and 8 are found as K, is varied. To
fix 6z = 0 and hence determine our biased y, estimates, we employ a
Newton-Raphson search which starts with K near the critical line given by
(3.40). Occasionally, no real solution to this nonlinear problem can be
found. For € in the neighborhood of 0.5 most final estimates of K, at order
K lie within 5 x 1076 of the value (3.40) for 0 < w <0.70. The dispersion
in these estimates is much smaller at about 42 x 106 The use of several
different choices of differential operators D, has proved to be important.
For reasons we do not understand, for some parameter ranges many
approximants can be found for some particular choices of D;, but not for
others. The amplitudes 4 and a, in (1.4) can be obtained by integrating
the differential equation (4.2) numerically, starting with the known initial
conditions at K=0. A simpler and faster procedure,® which we have
adopted here, is to use the differential equation (4.2) to generate two power
series representations of F(K), one about K=0, the other about K=K..
The expansion about K =0 agrees with the known series through the order
used {e.g., 21) and thereafter simply extends this series to higher order,
while the expansion about K= K, depends linearly on the two unknown
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amplitudes 4, and A ra,. These series can be used directly to evaluate the
function in the interval 0 < K < K, and matching F and dF/dK at some con-
veniently chosen intermediate X then determines A, and a.

We have included in Table V of the Appendix 50-term series obtained
from two representative differential approximants to the 21-term spin-1/2
Ising model susceptibility series: xd/dx[9, 6,9; ¢ and d/dx[7,6,7;1]. We
hope these series will prove useful in tests of other methods of confluent
singularity analysis. The series coefficients satisfy 9-term recurrence rela-

(a)

n=16

(.23 1.24 1.25
n=1i7 14
n=18
n=19
n =20
n=2I

.23 1.24 }.25

Y
6=055, L=¢

Fig. 2. (a) Number of homogeneous approximants to x(w) yielding a particular y with a
resolution 2 x 10~%, with a fixed correction-to-scaling exponent § = 0.55. Results, cumulative
over w=0, 0.05,..,0.70, show overall convergence with order; (b) As in (a), but showing
instead estimates of 1 — « within a resolution 2 x 10~* from the antiferromagnetic singularity
in ¥; (c) Again, estimates of y from y. Here 8=10.50 and n=21 are fixed. The order of the
inhomogeneous term P, in (4.2) varies from L=¢ (P, null) through L =2 as indicated.
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0.80 084 0.88 092 096 |-a
6= 055, L= ¢

.23 1.24
§=0.50, n=2I

Fig. 2. (Continued)

tions of the form 3., Q(i, j)(n— 7)Y ¢(n— j)= P(n), from which additional
terms can be calculated.

Two important trends are apparent when all the data for 0 <w <0.70
are combined into a single output. The first is convergence with order; in
Figs. 2a and 2b we show histograms of the number of biased homogeneous
(L =¢) differential approximant estimates for y and 1 —« with 6=0.55
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based on y series to order K", n=16, 17,..., 21. We note that even forcing
a correction-to-scaling term, as we have done by using (4.2), does not
guarantee converged estimates if the series length is too short. Consistency
suggests that only the n=19, 20, and 21 estimates for y represent the
asymptotic value. It is interesting but probably coincidental that also no
significant estimate of 1 —a can be made until n > 19. The second impor-
tant trend results from allowing for a nonvanishing polynomial P(K) in
(4.2). In Fig. 2c we show biased estimates y with 6 = 0.50, with P ranging
from null (L =¢) to finite order L =0, 1, 2. There is a significant drop in
the estimate of y in going from L= ¢ to 0 or 1, while at /=2 the dispersion
in the estimates begins to increase. Since we have no a priori reason for
believing the background B, in (1.4) should be zero and hence P null, and
because they tend to reduce the scatter and improve overall consistency, we
base most of our quantitative estimates in the following on L=1
inhomogeneous differential approximants.

Detailed results explicitly showing variations with « are displayed in
Figs. 3-6. Figures 3 and 4 are histograms of the number of biased estimates
of y for each value of w separately; Fig. 3 illustrates convergence with
order, while Fig. 4 illustrates the effect of inhomogeneous terms in the dif-
ferential equation (4.2). In both figures we also show the effect of changes
in 6 between 0.50 and 0.55 at order K*!. We find that y correlates positively
with 8 for small «» and anticorrelates with 6 for large o, in qualitative
agreement with the spin-S Ising results.®) Our “best” approximants are
those obtained with the polynomial P of order L= 1; those based on the
operator choice (4.5) are shown in Figs. 4¢ and 4d for 6 =0.50 and 0.55.
From this and additional data based on the choice (4.4) we conclude that
universality is best satisfied with

y=1.23740.002, 8,=0524003 {(4.6)

The error bars are subjective, but, we believe, reasonable. In particular, the
very distinct downward trend of y with increasing « shown in Fig. 4d
makes any value 6> 0.55 unreasonable if universality is assumed. On the
other hand, 0 slightly smaller than 0.50 is probably not excluded by the
data shown in Fig. 4c, especially if the estimates for w > 0.60 are excluded
as unreliable. Such exclusion might be reasonable, since the amplitude «,
is large in this regime and the form (1.4) is likely first to become inade-
quate there. Finally, the estimate (4.6) is lower than our preliminary spin-S
estimate y = 1.239 + 0.002 almost certainly because of our present reliance
on inhomogeneous approximants. Figure 5 shows histograms of biased
estimates of 2v determined from M,/y = 2¢? approximants. Again, from the
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Fig. 3. Histograms, centered on discrete w, of the number of homogeneous approximants to
x(w) yielding a particular y with resolution 2 x 10~% For each w, about 25 approximants with
the choice (4.5) are sought; of those that are found, only the nondefective are plotted. This
pumber may be small, as, for example, in (b), where for @ =0, 0.05,... only 10, 10, 8, 6, 7,...
estimates are available. Plots (a), (b), and (c) show variations with order n with fixed 6 = 0.55
and are a detailed breakdown of some of the cumulative results in Fig. 2a. The result of
changing to 8 =0.50 with n=21 is shown in (d). The equivalent cumulative result is shown

in Fig. 2c.
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L =1 data shown in Figs. 5c and 5d and from additional data based on
(4.4), we conclude that universality is best satisfied with

2v=1.260 4+ 0.003,

0,2=0.51 +0.03

The consistency between 0, and 0, is noteworthy.
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indicate the bounds in our estimate y = 1.237 4 0.002.
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Finally, Fig. 6 shows histograms of 1—o based on both y and M,/y
series. A correction-to-scaling term is not built into the antiferromagnetic
singular point in (1.4) and hence the substantial deviations from universal
behavior are not surprising. From the low-w regime we conclude that

o=0.11+0.02 (4.8)

which agrees with the value given by the hyperscaling relation, o« =2 — 3v,
using the estimate (4.7); however, the precision is not sufficient for a
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Fig. 5. Histograms of 2v estimates based on approximants to ¢? with the choice (4.5). Plots
(a)-(d) show variations with n, L, and 8 as labeled. Resolution in 2v is 4 x 10~* The solid
horizontal lines in (c) and (d) indicate the bounds in our estimate 2v = 1.260 + 0.003.
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definitive test. At the particular value w=031 (ie, p*=090) our
approximants yield | —o, =0.89540.01, in good agreement with the
estimate of ref. 19. While the hyperscaling relation a=2—3v is satisfied
better at this value of w, drawing conclusions about the validity of hyper-
scaling based on a single series estimate may be misleading.

From (4.6) and (4.7) we deduce #=2—y/v=0.036+0.006, if we
assume that the errors in y and v are uncorrelated. However, this is not
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realistic, since we observe strong linear correlation with nearly equal slopes
between the pairs y and K, and 2v and K. If we impose the obvious con-
straint that y and M,/y have the same K, we find 2v —y =0.0226 + 0.0004
and hence

n=0.0359 £+ 0.0007 (4.9)

This value is consistent with the latest field-theoretic results from ref. 4,
7~ 0.036540.003, and marginally consistent with the series estimate
from ref. 18, #~0.0375(10) (again doubling those authors’ one-standard-
deviation error estimates). Note that our best estimates of y and 2v in
Egs. (4.6) and (4.7) are also consistent with this constraint on K,; with
y = 1.237 we obtain 2v = 1.2596 + 0.0004; and with 2v = 1.260 we obtain
y = 12374 + 0.004.

Precise and meaningful values for the correction-to-scaling amplitudes
cannot be given without first specifying the critical exponents. We show in
Figs. 7a and 7b the very nearly linear correlations between a, and y, and
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Fig. 7. Correction-to-scaling amplitudes. (a) Correlation plot a, versus y from y
approximants with the choice (4.4) and 8 =0.50; (b) correlation plot of az versus 2v from ¢
approximants with the choice (4.4) and 0= 0.50.
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ax and 2v, obtained from our inhomogeneous approximants with L=1
and 0 =0.50. Thus, with the central values in (4.6) and (4.7) we find that
the leading correction to scaling vanishes consistently for y and M,/y at
w=0% y=y* with

w*=10.39, y*=085 {4.10)

With the Chen et al.*® central estimate of y* = (0.87 we obtain from Fig. 7
the value 7~ 1.2383, consistent with their result {1.2385), and predict
v~ 0.6311. Similarly, with y*=090 of ref 19, we obtain y=~1.2395 and
v 2 0.6322, which are again consistent with their estimates. Note, however,
that with these higher values for the exponents y and v, # ~0.0379 and
0.0396, respectively, which is no longer consistent with the value in (4.9),
obtained by demanding K, equality. The consistency of our results gives us
additional confidence in the validity of our estimates. If we were to make
the now unreasonable assumption that corrections to scaling vanish for the
spin-1/2 Ising model, we would find y=1.243, in agreement with the
analysis by Ferer and Velgakis""® based on a 5-fit method or Guttmann®
based on nonconfluent differential approximants; similarly, we would find
v~ 0.635. Again, with our own central estimates vy = 1.237, 2v=1.260, and
6 =0.52, we obtain from Fig. 8 the spin-1/2 Ising estimates of the correction-
to-scaling amplitudes

a,= —0.13, agp=—022 (4.11)
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and

22 170 (4.12)

ay

This same ratio estimate applies to within a few percent for all © <0.5, as
can be seen from our plot of a, and 0.60a,. versus w in Fig. 8. For >0.5
this ratio drops considerably and could conceivably agree with the con-
tinuum ¢* model estimate®” of 1.30+0.10 in the neighborhood of the
Gaussian point. As discussed in Section 1, this model dependence of the
amplitude ratio is one of the indications we have for a possible absence of
universality. However, given the latest continuum model estimates, the
value 1.30 may well be suspect.

Of course it is worth recalling from Fig. 2 that systematic trends in
many of our estimates are apparent through order K'°. It is only because
of the apparent stability of estimates based on 19-, 20-, and 21-term series
and the internal consistency of results for y and ¢? over a range of w that
we can have any confidence at all in our estimates. Also, the low- regime,
and in particular the spin-1/2 Ising limit, remains notoriously difficult to
analyze. Even at order K?!, the estimates for y are typicaily bimodally dis-
tributed, as can be seen in Fig. 4. Finally, there is still a fairly large uncer-
tainty in the value of 6 and in the correction-to-scaling amplitude ratios.
Thus, there is still very considerable justification for attempting to obtain
even longer series.

5. EXTENSION OF SERIES

In the conclusion of the preceding section we discussed how the ques-
tion of universality is not fully resolved and why there is justification for
attempting to extend the available series even further. Extension by two
orders in K is unlikely to lead to any significant change in these conclu-
sions; extension by five or more orders in K is almost certainly impossible
with the techniques and computer resources now available. Thus, the dis-
cussion below assumes as a reasonable goal the extension of the series to
order K?°. At this order the array c, used in the program segment
described in Section 3 can still be packed onto a single 32-bit word, and the
graph weights w can probably still be handled exactly as integers with the
IBM quadruple-precision facility. Thus, large sections of the present
program still can be employed without major modification.

Two features of the present program, however, must almost certainly
be modified or at least receive serious attention. The first feature is
apparent when we estimate the storage requirements for a naive extension
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of the calculation by the program segment described in Section 3. The
number of entries of 2-rooted, 1-irreducible contributions in each order n
for n=1,3,5,..,19, and 21 are 1, 2, 5, 19, 81, 353, 1619, 7704, 38,353,
204,854, and 1,055,792. Extrapolation suggests 6 x 10° and 35 x 10° entries
at orders 23 and 25. At 32 bytes/entry the order-25 list would require some
thirty 40-megabyte tapes for storage. However, as discussed in Section 3,
each entry contains the information necessary to obtain the complete
embedding constant array e,. If we restrict ourselves a priori to calcula-
tions of y and M, only, then the complete arrays ¢, at high order are not
requited and a very considerable increase in packing density should be
possible.

The second feature, which we believe will be the more difficult to
modify significantly, is the time required for the generation of the elemen-
tary 2-rooted, 2-irreducible graphs. Our present program generates these
graphs recursively by using the slightly modified Heap rules®”: (1) Join
any two existing vertices with a new bond, provided the vertices are not
already linked by a bond; (2) insert a second-order vertex on any existing
bond and join it to an existing vertex with a new bond, provided again that
the vertices are not already linked by a bond; and (3) insert two second-
order vertices on distinct existing bonds and join these by a new bond. The
modifications we have introduced are for the purpose of excluding graphs
with multiple bonds.

Finally, we use as the starting graph for this process the 2-rooted
elementary graph shown in Fig. 9a and supplement the three Heap rules
with the following: (4) Do not join the two root vertices with a new bond.
We can prove that this algorithm will generate all elementary graphs by
showing that for any elementary graph other than the starting graph, at
least one bond can be removed which will leave the resulting graph elemen-
tary. For example, for the graph shown in Fig. 9b, any one of the four

(@) (0)

Fig. 9. Two elementary 2-rooted, 2-irreducible graphs with vertex assignments obtained
from the algorithm described in the text. Each edge will eventually be replaced by a “nearest”
neighbor bond or a 2-rooted, 1-irreducible segment in the bond renormalization section of the
graph generating program.
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bonds joining vertices 2-3, 2-4, 2-5, or 3-6 can be removed. Of course, this
also shows that the graph in Fig. 9b will be generated four separate times
on application of the Heap rules to lower-order graphs. Since for a general
high-order graph almost all bonds can be so removed, the Heap rules are
very inefficient, because of duplication. To obtain the 7x 10° graphs
estimated in Section 3 for an order-K* calculation, probably in excess of
10® graphs must first be generated. We believe that to make an order-K*°
calculation feasible, a more efficient algorithm to replace the Heap rules is
required, and we hope some reader will be interested in this challenging
theoretical design problem. Ideally, all duplication should be avoided by
such a new algorithm; if this is not possible, one will still require an
efficient algorithm for uniquely identifying each graph so that a tabular
search can be initiated.

The algorithm we used for graph identification is probably adequate
and is easily described. We begin as our step 1 by labeling the roots 1 and
2 in both possible ways. Internal vertices are labeled 3, 4,... in subsequent
steps. Now in general, at the completion of step » — 1, where n =2, 3,..., dis-
tinct labelings of the first »n vertices will have been kept in store as possible
candidates for further testing. To accomplish this testing at step n, we first
scan through the labeled vertices in the first member of our candidate list
in search for the largest vertex which is connected to as yet unlabeled ones.
Having found this largest, say m <n, we proceed to assign n+ 1 in turn to
every unlabeled vertex that is connected to it. For each assignment we form
the integer string mlk... of labeled vertices that are connected to n+ 1 with
the convention m>/>k> ---. Then, of all possible labelings at this step,
we keep in a temporary list those that maximize in turn /, then £,.... Since
the strings to be tested will in general be of varying length, we need to
imagine for this maximization that each string mik... is supplemented on
the right with trailing zeros. As an example, the possible strings at n =4
are, in order, 4321>432>431>43>421>42>41>4>321>32>
31 > 3; the remaining 21 >2 > 1 never occur.

Having found the maximal string and associated (temporary) labelings
for the first member in our candidate list, we proceed through the rest in
a similar fashion. Either we find a smaller string, in which case the new
vertex assignment is discarded, or we find a string greater than or equal to
the previous maximal. If greater, all preceding temporary lists are discarded,
but in both this and the equals case the new labeling is incorporated as
part of our (temporary) list. On testing completion this list becomes the
possible candidate list for step n+ 1. Note that the discard process makes
the algorithm relatively efficient; each list length is the symmetry number
of the partially labeled graph and this typically is quite small.

When the labeling is finally complete, we use as the unique graph
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identifier the composite integer string formed from the individual strings
generated at n=2, 3,... and listed from left to right with a single 0 between
string segments. As an example, the algorithm generates the unique strings
210321 and 210320420531 for the graphs in Fig. 9. Furthermore, it shows
that the corresponding labeling in Fig. 9b is unique, whereas the labeling
in Fig. 9a is only one of four symmetry equivalent ones—essential informa-
tion for the subsequent bond renormalization segment of our program.

Given the integer strings generated as described above, graph com-
parisons are easily made by an individual integer-by-integer comparison or,
equivalently, by number comparison where each graph is the single number
that is the string in a system with an appropriate radix. For a list of all
elementary graphs of <25 bonds, a radix =17 is necessary, but in fact,
such a complete list is not required and radix 16 is both adequate and
convenient for packing all strings on at most five 32-bit words.

The elementary list reduction comes from the fact that for a calcula-
tion of zero-field y and M, on the bce lattice family, every elementary
graph must, after bond renormalization, contain only even-order internal
vertices and even loops so that it can be embedded on a linear chain or a
pair of nearest-neighbor sites. For example, the even-order vertex require-
ment can be achieved by doubling bond 3-4 in Fig. 9a and bonds 1-6-and
4-5 in Fig. 9b. The even-loop requirement can be achieved by the insertion
of a second-order vertex on bond 3-4 in Fig. 9a and on bonds 1-3 and 24
in Fig. 9b. Other doublings and insertions may also work, but in any case
the graphs in Fig. 9 cannot contribute at orders lower than the “true”
orders defined by the addition of these minimal doublings and insertions to
the direct bond counts, ie., 5+1+1=7 and 9+ 2+ 2=13. These “true”
orders are the ones used for the graph counts given in Section 3, but the
Heap rules were not completely successfully supplemented fo avoid
redundancy by generating graphs of too high “true” order.

In summary, we believe the derivation of an efficient algorithm to
replace the Heap rules for graph generation represents a challenging
theoretical problem whose solution would be of great practical use in
making possible the extension of the series now available.
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APPENDIX

Spin-S, Blume-Capel, Klauder, and double-Gaussian series coefficients

(Tables I-1V) and representative differential approximants (Table V).
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Series for Scalar-Field Lattice Models

b
1/00988£8
L/662662501861

OhENTHELE6800EL

H9GH99GLEREIEE

h8LLONBNGGOGhEL
N/E9LNB608LLE9EDE0E
G/LLLZIN962E098L20L

Ol /1202098026 hh6sE Ly

2/L21989%028060L94
8h/6EHEGGEGEDL/BGE06
n/L0Lh9EL9661252GE
-08/1662££6621606¢/02
£/h065£L6209690L2
h9/66250LehehLLeint
8/G98202L/hLL9Lh
81/L09h6068094L14
8/12L9051L16209L
t9/66£00¢0¢e612€82
9188160LLG
9L/129620h5h2L

a
S/HOENELY
6/2€h0402061¢
G/2E26990hERNGL

2186402972929
1269504489820
S/928NLESERLENLOL
G1/867206817006182h
0202561260LGLLE
ozh8LZELE2LSE2E
ZE90LELLEQOR2EL
€582£0€681/818
LGEEELL6829692

H2/16099Q1L640118281
/6661811089261
H/G6586L6665191
2/1€L1225100LL
z/GonL2eengLe
2/G6G0686£56
1/689508€2G1

]
gaLLee
06L£951 €81
002€624L9hL
CL/GLEGL9L6690EG1
nBNS962E99M0L
h2/62926621 6668924
GL9601050L L0k
1/G069E 2090981681
Ohh982LELELEDC
H/LH0E29LE68126L
£/01890760898622
96/G8£662£659L 1252
8/6891995990/25
n9/G0286BLELNG10L
/£2968L9G28¢EL
IL/GLONZL8BE0LL
8/69482668/6
2£/696h.2h265

0
6/2611602
£/09/£€86661
£/0L9818G5hL0G
€/992988128hhL
L/5hSh8nLG0h088

02Lh0LB8/68L0E
£/6h09t81€0992L 1
028€952/82.09
elie92s62en2y
€/8LG0ERLIE0609
n/6L05LL2180E62
©/1£6690168898
h2/SE0102hEh600L
6L6/0GELLEL
8/62526h664¢€2
£LOELINGS
2/6G69998LL

f
02626
h/G06£LE0ET
£91LhO0ESH
HL/L8LELOWONSEL
hezee0gels82e
8/£L29EM891625h
2/€h21185G21991
02/68628L66GLLL4L
6£6H029£€98%
9L/ELL9LIGZLEGES
7/110969912.82
8/ELL/6LZEERTL
n/6L£8L626012
h9/LE66606L06L
9L/596£109.6¢
2£/6001L889¢1

0
9ELGY
q/t0Enio6ee
GE/9L1682hhLON
he6£926G.0L
916801heseh
89€L 11469626
G/9LE2LLLE621Y
09698288101
06082h0h. &S
29164186022
440506092,
666L¢2L102
h/€LGLG64802
2/600955612
2/6192290%

f
q/h90LEL
1/220%00€01
08hoNhe6e
16406829¢2
89.6h£8408
OL/EWhGBONLYIGL
089492L8081
2/6980829.192
L596882049
21/68868226182
h6.88ELG)
gL/LGLnL6Eg2E
R/194166061
2£/108£6660¢

g
L/2L0LEL
0zLOLth
0219518L
Or09LGNLG
0hE6922LG1
02847120992
£/0£6504h0118
09€902604 1
06£8298GL
989£8£992
2/600L95191
2/6899180%
h/L8ehGLLL

= NOISNIWtQ “

=== T3Q0W 73dvI

f
0962
6681261
68L€c0Le
ILHELI6LL
N8LSOh60¢
€/LG10LE08EL
8909¢C10h
2/€L009LEhN
L1898€06
8/6118019h2
¢/LEGE60LL
8/L12L6e9L

0
€/18E91L
9£6G LN
S/MEGLEGZ
£/8h021128
9289.1€9
H8ILELEL
€/80.1698/ 1
02626062
09260§1L1L
2seeene
087126

f
2¢ee
©G0084
0216691
9/L0686001
80902821
4/1901986¢
0102¢L8
2/L0L896L
H1198¢€1L
L1860%

g
/2618
/280921
£/829468% L

9611191

0643042

09.69¢2

0gL62EL
82.0£6%

099821

IN3IWOW ANOD3S

JWNIE --~

g/shg6E2l
H0G26S

t/LE60GTL
619061

e/In6LGL

Q

alLs
2688
EUAYA
8elE01
giLtali
96919
26¢€L¢E

f
9Le
018¢
0ohtr L
£1812
8912

z/eG6n2

8891

(parusiuo) )

I elqeL



Nickel and Rehr

42

8 g
h9gsNs1 £/0256
£/8hG0L99EL19 ] €/66E¢hHS
£/09EL£6LE6G606 0824¢ 0068£02
9/G8L26£5B699L629 ] 0L0€ELNL €/0Li%0.8¢2
£/7991412168862958¢ 60L982 096/8L42h 77185502
21/1.8190961.8€168/96 01/L690/61106 2£90.6¢h9% 2/6L1hEBeS
ONL0ZELLELGhNZE62 GE/L5600828E21L2L £/21699199M0L 900€6/€2
000LLG2LLLI9L 222) 2/661022/ 160621 £/876£€22h0L61 £G9LE2GL
0925084986hGL19611 1/68229n56602H02 287GGE68960L
86.0L[1LL062L0ETNL W/ LLS080L61610L8 LR6LLLBOLYZL 8
£/0L26806492646986€98¢ 02/LhGLSLO6ERBESELL 9€9GhEHLLIOL gL2e
81 /G6560230hG26ELLLESH 9EhheeeERN2ZENE 9680L9€LLINL £L10L
71/G6H01266n5E26805E2 8/G48162556160268 20/8h€6892h INGLES
2 2€/G£89LE6L1LBLGIIE0E0L 8/L2LE1h6H010986L #/£0L9691 1621 6106961
00h2665 /658128950691 684¢ 91/11E80086629L06L1 2/1h95€99
L/0L8665 106281 8/1LEE6QLEEISEEEENSG 9L/6281€92.L01LL60L 8 2/18LL10L
9106891081869 0996221 8¢h846862 2£/58089209961 L94L £/9¢912 2/159LhLs
968090800£THIE9E R/EELEOEO0LLI6L982 2£/£981500LE50S LN n6entlh
n908L4h6218266L465 2E/1G6E912819684G1LL S/h8hSL8LLS 2
2/1LEG8NZLSLELE6E08NE 8 £/M1GL9E6662 8001
S/6668L86896£062810801L 6/2560LL6 8 9/LH180h9LERS 9€8he
0L/6698G6LLhEELLN8L9004 £/0115L220281 L G/2E91LL9 2/620160L6061 2,286
8££981£08920080898.2L £/0¢2LLLi8LiEL1L GE/2682E6G61G £/L1961h6H4G0h 71806€
9/11222296206201262601L1 9/€28¢080896E6G1L L 2SGLEEBGEL 2/69m662£80L2 969506
L L9006hL2065EGL02661 L2/00hLSB8L80L0G62R 8G88NLHOZLLL h/Gg626645€62h 6GLHEN
On/E0R9N9SGEEELLZ22980LI SHOLhELLEOGNLZLL 9LONLEE6SGBOB 65896.8999
9.802081L600956LL1L9LL 21/G60E8LNBSL6L692hh G/628025162LEESL 2/1£621168L9 8
96/50LE49109€20L2LEL5€99 h/G2ELeehOGhELLINGLE 9G0E LTh50220L €/261e
n/L990GE6EGE66GE19MGhL 1/19G65h66GLELINLIY Gh20£906h0ot0L ] h9L6
h2/£6966£820250098862 L1 QEGELOeLI6hL6iNnG2L 80086556982601 9LhoL 2g0Lh
7/L0GE8ZZERL 666966062 21/1£8LhB6E9EE6EH6952L 9/64LLLEG9L0LES 6/966206L 8GE0L
2£/€2€G62LL189LLE68016 L1L£08LE8LL0822L 9920L6Eh56L09 £/89¢encee 0282L
8/6062GLLG602EN69MIL 8h/61599€L€829£852902 8/LL£696L125€182 €/EE0EGLTLY
9L/€EEL266hG66G8EEHRE 7/62808L£0921L66868 2/6189GLEL2LLNE 9CLEOEELL g
28/€GLE€L619106€G1EEE 91/1062565909266 2/1062L0nELE 9¢¢
8 2S/1E666G8NELBNOLLEL H8LEGEESOL 2h9e
G/9£005£81 2E/GGLLeNERBI64GE6E g 02098628ML H0£6
G/860h86681.9¢ 1/268¢LG 969/ tE2L0L 00221
G/212912690n18L 8 08LL19%% 648089225
9228119661 16€9 09L1€h 0800161881 8
7/699£€£222hE1LL029¢ 2/69186116¢€¢ 0LhL9SNIONE 8 9¢€e
09/1268C26ELLELSLIRBLE hGGLLELLRENL 0969910650H1 /26168 hLLy
61/226206900420696299¢ L/Eh0026nhRLG2s2 £/08.86251265€L £/B0S629L f1102
t/€€08119.6229L9812L2 HZL8LBLL6L090E €/GhE6ENBGEINTT €/218L€8BEL
8/696£912¢ 182L6926066 H/LELL66200L20£09 OLOLZL8SLIELL 6h2h06hh 8
66h06NH9ENNELII0EIL L8GENEE L6hBR LY 0LE£0LBLO9L0L 0geghleel ZLL
0L/L1H0RL9t81 9606699641 0L/1E9E06£966019298 8256GHEINGLS 22LhaLL6L 43
21/69624586€ELLLB6SMO0G I 2L6G0E629LLL0NLL 2/60£6.9€152801 Z/GnLLlneoh
7e/GLL09EOSHELEQDLELS6L h/6LG8EOESE LN 9L986t60L0L2 2/€G8LEEGLE ]
9L/LLOLEBBLE6ELEEL208NL 827991.801962298 8/119h901£88N8 Z2/L0GEEE6LL 26
26/1LGhGHERRGRELGL98GL LiLhGLOLh966296
2E/66LLGGBLNNEDSLELGHE 2060L561261281¢ ]
19/6E7990G69L£2LLhZ282 2¢/60084021L.5008£05 € = NOISNIWIG """ ALITIg11430SNS
8/122560688218088K721 8/609812LLE0CILES L
2/69126£046£08¢Ehe8 9L/ 1LGSEMNE00666LE¢ ==~ 1300W 134YD - 3Wn1g
(pomuuon) |y @i1qel



43

Series for Scalar-Field Lattice Models

8
002656
L/06L9EHEH0ODLEL
96299895025808
02L0126919GEnEHS
Z2L0L089REN66LL060L
2/1819).£6090LG£6612LT
G/EhLEBBIRLGOEOEEENO6T
hE/€8622L12hLhEh00h86208
nG£80.9£968L06682H56
9/6£658L1HM2G0LLBNI8LZY
18198686628€2LL608051
Oh/LEENNGI66962964 9194089
£/022LLEGLEM2058L0068
2E/E8N9L609E62h69GNELE06E
h/GL600L62L908E6hEILGeE
H2/€G9LNE1 0862291 LLGERBELL
©/LEGGNOLILLONOLEEOLBE
2E/GECTI6LNONBLELLEECEBSE
8/L6£18018N61L0801L8LGE
91/L066LL180EH219424902

0
G/912L1191
n980KL700EY
2E0he8.28.68L1
9LE1962£9892106
0£211969226£66091L
G/881168L.2805092800L
£/098289166681.6219LE
8CL9.GELERSONNOGENT
0hi2h899995855HMG08S
9LNM9€212290LL6086101L
6/2hS8G266619268585189
981/8/6,611H29LLhGhL
2L/68ENSLGNEGLEGLELILLGL
2/129L8EE6£0022825L481
2/¢nheL8eGELN929256LL L
9G1E6129Ehh1006€82E
2/6hL91029¢E L L2E68602¢
2/692LhL9E98LEZLOLESL
£212/.6500000681802

8
n92ahsL
8901888ghhLe 8
009LL2/2L289¢ 0824¢
9/60£188098192886 0 06€647/91
€/8hhhEQeHLLEELGL hhr129e 088€9¢9€£9
2L/ L9M6L9L02Ghhiinte 8098208GY 8911988626
0c8ehEge9eLlenhalLe L/thEeL024820t £/9601961H62681
Oh61L06L8ELL60LESE 2L6NL68ESZEOL €/9GE1€L1696hL
0046/0hG26.88598229 02.€%2L289hL0L hG1L26€289929
9eg9hohihele9LEgioL ©2Q61L9L4192.909 615866660101
£/0692LL119G169496581L¢E ©186Ll2in9t0ghie 8hG880L81 LEEL
84 /GE9EL8EL6EL6£6£99109 H0LGLEBLOGHSEBOS h9GLL609LLLEL
H/GE664G908E6LLL89LLLY 096909158825858 LL€19112h66
2£/661€020h260/18882622 9G180068L26EEB0L h/1GLnhes6949902
e/£8££699921629.8%98 116802906298917L01
8/€1€1029L9h9€8865181L h6QESE9E1L980L8 0
9€1L66L.8896K.76001 2/L09L6WGLLRE6BLLL £/9£569
h64LE8GL006hoNEE LEOLDZGL9E6NBEE 09£6GLY
66187G1968916¢1 gHh9Ee8L9L
0 S/Mh6HELEE6S
6/80988¢9 8 0919£€8.0C1
£/009L€96461 G/2E9LL9 ZehE66S2E6LY
£/00601788220162 GE/9612561808% £/028E98GL6LLT
£/h9£6009h€52€98 QrgNI9LLLOL 800£0€L196€1L
L/9%9L0628GhLLLE1e h6468E£62212 096886284451
0h8616824E00¢ER.E 2662822166981 9L8G6LNLELEL
£/0961862615900926¢€ G/69hL9LE9GBRG LI 2Eh88998¢6L
OfLGO0ORShERZNLIEE ghhel21 2291008
9LEILRON68KG2T 189 6018620L1G4E09 8
£/h0691£19h92018290¢ 096LLTLGNGLESE 9Lh0L
2/11908h628h85hh09¢Ee 9/€119L1086672289 G/898£966
2/6hG6¢21 80680602612 069621£98m0Zh0L Q9LthéGh
21/GL0811988.€8E€81L10L 8/1LE066G4RN0ESZ9 €/62LEEEBONL
2hE0h8988EEELLIBGG 2/€90061742L91L96 cilehélgee
h/£0226€02EL€L661921 91/18/€808.LE8h500¢ 2/1868¢LhGEht
2/121999696¢€L€L120¢ 2Lh2es689tL
6LG620LLELE09GES 0 28LothLI628L
L/882hes 09L208669L1L
8 00clOiny £2h9642L02L
09LLEh 0000€€LLGE
2/Gh56582mE9¢E 09iheehizeh 0
98E2Lh6GhESL hehZahhGelet 6/89.2¢
LLENBELGRLGES 092.62082L1TLG1 £/02€09L1
24601 L6RENIGHY €/096EHG€1961621 £/006L68¢
h/1nS190.6828EE291L 09¢6971LL1hEGe HheE89880L
L£992926690€0.41 OtgLhEe2L90h)L 96L068¢8H
2/€h28Le66096LL618 8eeoheonsheoel 962961622L
9ehh68hLechl sl Lon18698882101 10€280¢c02
[/ LLRELGEHGBOCHEL LY LENBZERLENELY 26L66760¢e2
9GLTLLL96hH0EBBLLL 2/68126Gh8LLSIG fn1866LheL8t
1922£602029L02.6
06650EGS6L60H90L
CE/LEILEG5L92GERBNGEL £ = NOISN3aWIQ "' LNIWOW GNODJ3S
8/626hZ86821088LELL

9L/ LLELBRLOA686L0G9EL

--~ 73Q0W 734¥Y3 ~ IWNTE ---

8

£/0246
G0LLG2
02h018€

€/062¢e1218
2.9¢2186

2/£00€£g882h
201190062
62€998.92

0

8102
026¢e8
009¢€LLL
982,99
0001 1c0e
891L6LN¢E
0266¢88¢

8

800L
ShLRE
00009¢
2921ilL
ZLEEL6YE
646£604G

Q
£/8102
09L¢1
ongLet
89610%
96824l

8

9¢¢
n1L9
8264¢E
82L86

Q

962
0942
09LelL

2Ll
96¢E1L

821

(ponuniuo) ) "1t 8|qeL



Nickel and Rehr

44

0000888/.£9££92
000198801 8LH1 6866~
00912£6/16£20L 108962
0Z662LE£GhN02E06L8GLGEL -
ZL6H6818998L€/80£805862
09.6228¢HL1£L2286640910-
962LLEEGR6L60N26NB69NGCLE
08266.256212698408GL802hGg-
9612282LL826LL9L6L2h92E50EL
894h6909829502H8N LG h0E9L 26~
2L621LN8/21ehhG8Eh92.66988091
0669061 €82h€8.928220¢Eh229Lh-
02281082289460/82016£89/ igh8
HBLLSHELLELEBNGOGEDLLLEBLIFEL -
GLLOBL6ELO9099E9L08LECHTILL
80166891999/.2286E62.6890LE6LL~
00611£6161£228816166600L6H01L
0062196006 LGESBEM6EHLHD09028
GLEMNEEEL29LER99HGHB6LB0CLEE
0Q00EIMIGIELLLNLECILNGI L L8
0000881466082, 6GLLhGHLL0L

000888L€9¢££92~
00960L9%82962hEL
0h921L6288L2LE6EE2L L~
896LG2EOLB6886E989LL

Ot eh69¢ENBLELEBGOIGHL ~
lGLEGH680NLLEL9E68181
0848990€2206.90LL1646GG 1~
HOGLELLBLTHTGEIHNCERIG896
2G108L€6LL0E698NB0616L6GH-
g0hBL4892CeCLELOLBILEH09TL
FLOL6ENHZ682La) L8L9GEL LG LN
0hZG60€6128.208592668185L01
912481671941 689826L6L8L0E6L -
08h8hEEheLELB606€2LGNILGELS
2he0EBh8668981209L2826620€~
0LO90Lhh8L6L66021852h82hIse
0668062£885006290L2GEH60191~
0626LE02LILN02ELEZ685980L
00628946690/ 68MERLLNSECHGH] -
0000H919482842L9692801 662

00888L£9¢¢92
0008HZELLERLOLG-
OnOESNLRLI61G9ENI6
AONELBEGLLEGONELGIE

8Ot L L8BEHI6GHO8NEE9
082LONL061588LE8L266) -
Hh0LE65226L22G669E645EE9
h8L8BOEZINGONI8HOZLEHIC~
09L€5h9.80862L6hLZ8NELGL
186 LTBNGO92hEL I G8h68LC2Ss~
THhQ08NLBBHANZESOLGLLLLREL
0996728821966 1ELBLLIZERL /2
0620E9teghcegeaLlq8ihlligh
9692L99180LEehL2981 60026
L689L92650.688G/0€261118h
0/266L09¢hB5LLEL6EG5EL2E~
G12809N6EC62HEIL2Z6EE0G6GL
0004E /8628168606191 L6L5h~
00091L9LLLGHLEONIIOLLLED

002£h929262~-
001t298LE98G5¢EH

009£.7aL (8RI68ET-
h20LeL99sL0nheheLe
0888E6L1L069LL18HELE~
82E64GN96029ThiThIon6s
9€682/6021596€€, 68082~
Q08LLRLLIRGHELEGE9EG8NL
1966000011061 L70098LG~
Hh06L0172980628Lh665EL91L1L
9606964M169.06250001L16E~-
82928111.922h085810E€889
911080L60859G1LSE9E16626~
91089861980L89921600LE6
04266L0.6896298920ELE£69~
066E1886629618218L990G¢E
0060996.£6196L05260921 L~
000Z€809EHLL248ENERLIL

008H0hLG2E
00080e2e928Ee -
0h86/84 L hhe6h0h
EELTA R A [ rA AR
heOLhSLlhl ) BGRIGO61L
026£4.666eh62h08061 -
H2h8LEOLEFE 196080921
9L14£90091£690200865-
9EN022ZLE6002HEEIN06602
02£L6€9/616GLE9G82hGE-
1109246699096h8268hLL0LL
089620L9hE6GLELLEQDLIL-
8t1ec L1901 L6780ELG09€ELEL
000L€6L6£069€26.88026 1L~
0GL2L26hE20hL5EL0LLN8
000€26.229¢G¢ELE2EQ062~
00021 686€£5L62990299h

0089¢01
09¢4l9Let-
00942h 90— 9L€£L8819L91
00826h69092¢ 0872204091 E~
OK92GL HEGBRBOE- 829269¢£698461¢
26LEL6H0HESL NS 280LL1920t Lh6L-
9E61£0228IEH00BL L~ 6eeLhgt8nnlo8L
HBLELHG0SG89HLE0L onliLlge8e0¢Clie~
881L28G981LBU6E0LEL- 809090.180682 L1
19666E91160010088592 ZLEORE06GLGNEEG-
2L6eE 19192080 h66. - GE26LL6192E105
822609.662Lc8MhgLEgL 00h95958L7GL 622~
Oh168.65.899808E9LLE~ 009CHERSLLLOLSG
96€£216L92£6668£0968¢
0990£85068658826/8h¢~ 0082ZLi-
0062.86£65E¢E8ERN2LE 082EETLfr
0691966960261~ 09€GLLLGLL-
000896660856561LLIEL angLLLOLLge
9£L00KEE8ORE-
002¢£080% ha2lhoLnléesel
0082626898~ 2299€62£08.2h-
10,991 n692hee 0654960690£996
h066h92680L 096~ 8GGHLgeLEL Il =
2L8ZhEL66LZLLOL 0EL806£/1£06¢€1L
261921, L6060E€GG- 001960120208.L-
G ITRLSNESBE6612062 0098550661961
LE€9E0LZEEOSLB620LL-
G h62L¢L.8E0NG2h0862 00882
hL62L58666691 16186~ 00e2E96h-
6 169656088926806828 9LL660ELL
S6ZERZNLHOGDSNZ628~ 002866Gite-
G'2L5996£6L0.8986L6G 80H0680G6L L
0002680881L0607.L22~ 91420189008~
000129069¢L86082h 6l216£022582
IM8ELLE6EHON-
009162~ GLE0GE0LLEGH
09€49L82L1L¢E 00260htE682-
9£G€8.840661 - 00190960118
26lr681LeLheh
9ENLLGENL8N9 0916~
962 h6LLLE690EE 9GhLLL
L12h209e20116861 - 21086G1eg-
€GSONLDYETLEGEY 9091181
NL6QEHLLEILLLNEL L= 9GGEG L TLGL~
2882869L6E9689¢€81 8h0EhBHENS
6870604161972L 902~ 719.60268LL-
SH9€196609€929061L 0Eh229L69GL
008/£50€9€E8L 769~ Q0L9LgessLL-
008020£2162€82ht 0021L69G1LE
2 = NOISNIWIG "~ ~° ALIT19tL4308NS

~-= TT300W Y3IANYIH ---

241l

9L60L L~
9601662
9¢ggeLne~
cgazgastial
Z2leehess
921852814
0890462L0%~
09a6L4RL

882~
8ohie
0ggeee-
0hG068e
88GLLOL L~
9gz6shee
06c12L82-
0g6Leeot

2L

0h8e-
ShiGs
20Lles-
L6hgLE
0e/hzel-
0z1649

tz-
096
8166~
8GL0H
08804~
0809%

2
fige~
8LLL
Otiirtr-
onge

-
9L
gLe-
hge

k4
tie-
8h

2-
2

il @1qeL



45

Series for Scalar-Field Lattice Models

0000898L€9£E92
0007988hL8LNTLGRGE~
009L€60€988E0MEEROCE
02/hL.E8ESNEBEEH6E59LL~
2GGEINLIGINGEL2EEENLOGH
9689.60800£2m990982L261 L~
2L9011.8926€22.888GE/2h9L
2E00E6629TLEIBENE6E8GHZ06G~
84/ 60£6086HE998E8L8Lh5909N¢E
hehel06£22L89892h L e0ht89h8s L -
2e02Lhhh6L6598G0LERBESERQOCLLS
B8h912862529NG0LL49MhELE29069L -
98L19hLLLLNLTEGHZORILIEHE LOOY
2L06HL2)LG60EL909h6010M00808Kh9 L~
6G8E/6/11Zh66€918026E9EHLEELLL
2E6026ELL22E6065£298GL2hEG9ehl-
00611221 Lh02LL870GGL66L998GhEL
00625096228h8L1LL62L£4098051G6-
GLEGHE69698669€21 120920888261
000061 7921190608291 191 1S686h1-
00008421840L08620.2060500422

o]

009£€98991LL€£6964
On0E98E08646542ELLL ~
h205hG090h26£06.8568
0266801L4046¢929h09LG12=
2L122Ee0L666hLLLLCLESLE
0002.0L90690€€6€0,26¢€0LE~
€L2982G6hBNa662R869866LE22
9L.6€L098060M26628629L el
HHEL9LEZELChRLNEO861LLE6GLG
B9GE6HB684G68HE2/N0EGICEICLL-
OHh6912969M0Ec0nHEL88/ 809
826901 L69E91L8/L7LE6LE96870286~-
088%£0988L16L91GE£962E281199L
9e1£869LE61629€925856N996/ L22-
09LglzleEchoLe61SLhLLBLG8 e
QQzL6LeidtehLinlontngoeehniL-
0009€696LGLL0LBZERBEORIE8EE
000002628han6LL.88MehB08LLE-
000008262696916221€4912014

00888.€9£€92
0008BhTEELEBLOLG-

00021 1202896885901
9696917LHLGhh8h6288Y -
099.08€£¢.8h922L.8780L
HHELELGICEILLEBLELGONL -
2£94/G6LL62E6¢E6092LhhEL
9€6862689£L069585689M168~
807.81625881L259¢964868 Y
H98H8ECLEIRBEBE0CEELILRLL
9LLL1hZ80EHEGHLOLLOR6G62G
8928G1252She96HL0L08ZLE69EL~
HEQOLEEREIEI06H188029066¢€2
9L6108LEL0GZINLGHGELG0EE5¢E~
L80L£58001096L09G68LE€G96€
06661L19421L466689190219L460¢E¢~
€1L00€9214££00261226203926L
000292€LL66h180R8E1 92620/ -
000h0L02989L659L92h9L L1t

o]

0026562hE646687¢E
082.521709609299-
hhG96666L00LEE09.2
0ZL866H0416L1098E€96~
2LESELL9B09SCENLIEEOL
095867$L28628LELL0L6G-
9698E696182L60008€999¢
91L09026€L6L600L 16926891 -
261 1h2e6Le206088L0LL.964
009Lh50422SLiLh6LELONEDL -
2G£0£26826922691L10¢E1/inE
96800L8LhE61GLL08696569G~
2LNIGGLR2ELE068L1/18280L
Oh9/18LLe92L99h69E6L L N9~
00989hGg6S892SHEG2L60LN
00082069L L h9h1H0L88GEIL =
0009L616%8488hE68L0L20E

008h0tLG2E
00080222928¢£¢~
08248L04280L 861
8H02009L6¢98.80L1L~
CGE966L6850898181LE
H99689£065180289M9¢~
9.660209692156E1 L0882
28%€8/0hEhheehe62L86L -
ShELLINGI09LLLEGDGZIT
HWehOLL L Lh6006hL6166602
2G9hG690126E4L2L 65804
0802€2ZE947901661LL€8E6~
8h8601L665679818992216621L
OhheongLhh0GeL82iGELLiEL-
0GEBLLENETLNIBBE0L92L6
000/242260006691801€6€~
000h0GL8LLBLEIELGGEEL

0

00826196€96e
0962h856.8222E~
9£66242hL1£88801L
82696.2/690h6268L =
266L16GE9128E80N6L
784G E6NLSHI8966LE L=
2L LL0G0€6560GLELE0L
9L9EN6Z6860£E£GI90092~
728E469696.,089¢0nGehL

0089¢01L
09€619L2E-
HOER9LL1661
89/064£95091-
966982.08509G
89€££02sh209L2h~
Ghh68L611198641L2
88692641 219107GL-
9699€0192.109¢€81
0898.628L090ELOE~
GEQLEBGECTLGIBES
00890909/ t1iLEcee~

QENhZLLL6968LL6492095L~ 0089LLL0BSELEYY

82180809¢2£€012.80072

Q8h9LLLLL96E10294GhLe~ O

007066/ HhE00ELOGSLLLLE  0800GLLE
0002149800LL26448LL66- 02£9186H8L~
00088h66662¢49EL6€612 91£L6EE0M8E
09££0699902h~
002¢0805 h92ehzh19he8e
00826268982~ 88RcE086LEChCE~
8966667098662 26L91L1629089¢€
8h0ZZSGhiTLETLL~ 09€6/8862.t62L~
Hhihl0L69102h8LL 09€121608622¢6
whlEE2h6eHB6802LL- 00969£6.920669-
S HNE6EENBB690LGLLL 002£4h9988ERGES
6220808%£8.009692¢-
6790289£2816259che80L 0088e
86.89L670L9€26L 192~ 002¢£96t-
G GLEBLNGLNEEEEEL6Sn 2660/8L1le
Gl26l6£2921 68866~ 000£91560LE~
G ZLB6LNGL06E6£958860G 21Lh48LG060E
0002¢ L 17198118G652992 - 25€81.1885002-
00009€665£490180L2H9 ghoeealseinl
2he00L199L L1 L~
o} GGl EOMOENEIT
0h90008¢che 000228226¢£€€E2~
Hhi861t9.802~ 0070196012668
89G61G96GL2664G
9104.4298009.LL~ Q
007909101 861199 9L129¢
9LLSELEHOtLONe8E~ 2LiG6L 82~
HONL6BE6SHILITTGL HR610609¢
266961169122866hn- 969£.60L62~
960.9€6069¢1.L2026 807//81LhGhHL
H08BEN66LTLLEEOEEL~ hhERILLEGER-
09997 L6LHECHDLGBZL 088ELL9ES08
008871.€69L2GL680L~ 00889¢0L628~
00216222LL0996661 00021684LLE
2 = NOISN3WIQ "'* LN3IWOW QNOD3S

=== TT3Q0W HIANYIH ==~

2gil
9L60L L~
glLotHee
08262014~
88.1318.L2
89EL664601L~
061690L 142
080LL0EhLE-
otoLGLeLIt

0

09€4L
9ee0eh-
09€enin
2LLEh992~
2EILK608
09269LL2L-
0942428

2L

oh8E -
60htL
HEGBE9~
6£06992
0h986h6-
otBs LG

Q

hoL
elhgl-
wh6ag
000252~
08t9.LC

g

hee-
892
ozLet-
00261

(panunuo)) -

il ejqel



Nickel and Rehr

46

00009L2612L925

00082£/0/80€969Gt1-
002€7209.99€€188062HE

0190219660 e6ath6Lhgent~
hehLE0LLE6MBG0SHI60E6E6822
©0191L6CH9687GESEEEN0L681569-
9G22L6hEELEEB60260/.802L0261 L
80228hhL00L69¢h62.69G€E642G1 ~
0tZGhE626£2LL0T069066G00862mTL
Q0tigLhLLGLLIEGRONEBONLE6E86EMTOL-
h99h18¢2962E0L6L128068LE66ET26G
HBLLZELG61666/820600L166E0/ 8098~
2€09220/G168€2£016€92989¢69000L6
0h98eh0866G62EBNGCLLE6NELE9L0G84E8S~
98/18¢h2618£909422£0¢6E£0006260199
2/4t26822£660496809801429Eh1G06252L -
008096 16656802 LEINSBTEZLQE6LGNEL
00906961€M58004866.92822066.€01L L02-
062826/66196/926296€1 282910119191
0000h706h9L 192669961 666L0821692LL8-
00009.129129¢8hE2620£L966££0G0L 122

0009..6121924-

002L2ehGeheBELLEE
09/470690L621862L 161~
9L££62£669¢200L80£9122
09€1G1L6GE£90L66EG1G6L201 -
800/%61602880069L14781992
0019969281 LLL0L790240864 it~
89L6.62hL200819h29.68085126
71281L0L9881664G240M182L0L682L 6N~
91L9€2€225460426L0869L££920862
ZEOBELEBINLIGEL29€1608L25026E61~
09€€460/8h2nEeL LG6096GE628L1629
CEONLG61266E90R€81ENL286/219202~
02.06064L.72698LL286828NGEER22S
hcL€80622910221/892089¢H0MHLI0L~
020L61949469499648£61260148028691
00€6€21266L11199499662h0L 616002~
006/80€800€Lh2EGHELGENCEE00RLILL
0000.962089LhL7ZINNLLBE6ILGZNBE~
0000%9246€8€ (1 80L.962622L00M006,/92

00921621924

ohehega9L62299¢e-
02LLBESILNELOSS060L
912LL6197008%90£0690L -~
SNT0G2EE6SSG8 LEI8089Y
H0L096GLELELEELYELEROGOL-
26/11£2810L6886528700ECYL
9LhhE8S6600LSHECLSONBREDLL~
82LINLLL2GEGE6666L96GL2100L
8L/ 8LENTRTSREGL629026825h8-
919£0/.09€06€.h2629€£0808/916¢
82L0€86GHINE9€9€9/169/2e6 Nl
78266260L011L90/2219168/69¢1Lh
9£¢0/L80EN9/2269016918L 102826~
B8661£96692L8061219988L61892091
OnE2eSa8L0B0ERGRGONEONEELLLLI6QE-
069LL021E82L0L0€LLI88LLGLE0HEL
00091081ZLIEEG0EGHEIEZERILESL L~
000801162 16988672LE065064L8hEE

00198262586~

0962h06165€L102
00zLGhhLINLELLELL-
©99G9hh86066618109
0002£00192€892196/ 22~
91L00G6LL LT Lhe9G8hEQRO8Y
#06€£62E91L59112.611019899~
000H0290€194G/9€68867259
2L120808£42881.662.2/21940~
82606.64012129021641966252
2L06LE000SLTLEHZE9ELhL08h0L~
18.2€92628E1hL126612529¢¢
88280602989/£6286191288hEE8~
2¢0106E6692L1165H99120188L6L
086t98008/20€47268.82.109¢8222~
0069247919L28079¢CEG0NN9I582I2
Q000L9L69E069ERL106.6086E28h1~
000808Eh6G0MES66260LLL9668h

0096082049

0h866/8L2€2951 -

020081 L68550uNT
H8GEQCL946.989192¢C~
21018660L6€46L0426601L
09/LhL6661€46088h08C L2~
hZzeneeeelLlzos18L869e
9LEE6E80GLLLL1G965L26E2
8192960£202E L/ 9€8B5L29NGL
0882/880€1669890€2GhLLh/~
2L9619108E7628h90982ehEL 2
88241996€8199€26EH€051L209.~
960GLLLLELIEO6209LL096E661
081hL906EE9GLEEGEELLGESEINZ~
00/6£02092hE20£90L66662192
00026201696969841£65250018L -
000t99€6138928058NEIIALLY

002L48CL8-
0896120652061
Oh86EL8INELEEE~
hehGEhRERGLIELO0LS
he86%1 106801619029~
2GEN09LG50HL606060L0L

26L0L0216£069£5608021 ~

916692802Lh0L6EE0L 096

26ih1L19668290LLaniLihs-
261L069¢€0L9¢En1 64811622
22 n6GBENLLH0Z0EE96GLL~
16609219184 h89LLLLLISL
0006.89€L7296£8240802h8e~
0001269060, ¢/€06/69069¢E
0060675h69LLLLENEBLEBE60G2-
0008482056£001£86929868

0071309101
09L6hhGETLEL~
89/182182819¢2
B006621£8ELG5621 -
RE6GEHBLLNLGLELRE
12818461€262£69826~
19919690LE0LEGONTES
nG969¢L262h911889¢€ L€~
6GO68LLL9€2621H1LEBI8L

B0L860666251279€GL8L9-
£2LGLGEENON00ELLLGELL

0/9££0/80822886860h0RE -
GZLL168924chshBOL6ONTIY
0008084GHL10E861226L 98-

0002¢£2.9¢h60L99101 0L

0025LahL-

0968670601
8260hh00£90e~-
89/.78810248.46
896Zhthén 1196812~
2661862 LS6T2e6h62
28L029.269611106Ge-
868ONES006HL 6090941
261E£9602h2ENGL0L£99-
91/61889021L626804002
90269896£L280¢8682/ 2~
0LL2ihli0hitle0r08LY
00002L1/10179L2026124G-
00zL8L2LGLGENLLOREE

€ = NOISN3WIa

009£L02
02E0260911L-
89496000.£691
89L669GMEERL 9=
7186092L1L6629¢€1
2GL00LLNEG6ERLIL~
8£985/94B0OLN6ECL
9609625489191 019~
ZLONMLONELINLGGGL22e
2/9£8806160G1HEGGG~
OLthEC692E66ELE006
002.4L6606€L€80L68-
0021.£266162988L L1

0094hE-

089/91881L
896L0LL2ELL-
021600926616
hQ€0625HLG86~
96000101 GE0886
820688096th9zE9~
2E62rENL62h02892
2L8ENEZhENZNGESL-
098GLE0hELQLECONL
009L0ZL6LLOLELSSL-
0094GhG/L0EELEIE0T

009G

oheggleee~
261126991
9L2L626€9LN-
6106962569
2GiTL69101€6G=
01116025014061L¢E
9186L6109£46901L~
018£92999625622
0026£45060/ 1682~
002L06£61€2hI91

024tL-

28862h¢
969¢8LE02-
ZL6Zhh80LE
80212997845~
H0E870L0LLEE
CLENLNLBLEGSL~
0062486587004
0008661206085-
0088862/0408¢

AL1TT1G11d3080S

==~ T1300W HIANVIA ---

hoce

2L698h~
2q6e6€€2
89.n2L06h-
889¢1898tH
8262809L/¢E2-
892168EL9¢L
ognthl6L6GeL-
02.71892166

9L6-

021€6
80hgehe-
wgLnLLl0og
82gseeLLe-
hoL68cLahl
02946691862~
ggatLnehye

fifrl
FLhgL-
Willlh
80L9hGG-
8e0L6L62
ogofLell=
09¢€62628

2f-

190
899¢£8-
004649
0ohgzee-
0Zi16h62

gL
826~
9LLhL
09601~
oggeel

Q-
cLe
2gae-
i g

4
96-
h8g

1=
2¢

(panuzuo) )

‘Hl elqe



47

Series for Scalar-Field Lattice Models

00009426222926

ODORZ2ELDLBOE96IGHN -
002LLLG0NN6GhLLTG229E
0h0£0602865662060998226-
N9NZ20LZ6618NEERLETESREGOE
9LL1848998€2EE960LGLTGELLOL~
8268h0€.29228L1LEGG2SINM0022Le
2Eh0€8GEL182hBIVEIGBENLLBOZLE-
1209689161666.2€89€L06G82HEORE
ZEIL6hEGLEE50226G69L1618216/682~
h8EG22LEL2L9909L0G962 L NBELIHGESL
ZL684G80LG06£2669ELHL092GE6L00600L
B08LHEIGGLERLECLELHEGNS062G60LGEN
961120690291991L0£82452H98L9250606261~
NGELINBEL6TLLE68L0GEIERRGEE20088HEN
008LI6EL10G166692998LM0E8MZLGNESH66-
002£29892981189h0201L688£56891G28/L

008€106/8086186/62265690628L656¢Eh2~

0622h12808h22L9£06GHLM9GhIL8562E002

00000hSLE6ELO6249T62001L20294¢ 1864251~

0000969508G09G1LE6ELICCLEEELLOLBLLY

o
00fhechL99heLL8¢E2
088h6562E00LGL6L0TLL -
hEnLELLBEG6682LLLLLER
082€EhhEL88090262L12L0E 1~
2InShLLL2611.250£80920L6¢
0841220164625 18.891666L96LL-
2E092991€65HEGOEONBILEREEIOL
91110LL22ENTHE690229TH0BO0OGCL -
H0£0/L6£88G6E66EZE6ShtiéShehs
28288.LE21705019€2.90898688HH9L S~
QZ/h6ERL1LOHBE 1888021 HB09M08E2GE
881L9GLEECEGL6EL1.26L82L6GE05686~
02.76052hLh066988L0LER6L86060LLE
9169002 L6ELGGRLLINIELGQ HL26GLLL-
Ottt LGL8L960LH0L609/12EHLOLEE06LGL
00h0£98682229£29£4£682924600¢E Lrzg-
000hHLLL180G0L6h28LEORONLLNLELBER
00009.689.509169L//89062€ 11616191~
00000825029.29LhE656Gh6080006£G

009414121926

0h2h£869162299¢2~
0082L5068L1 969/ LLLL
09L69686E01868EHEH62L -

9491 h2L82E1690L6t7EL29
8828291126081 L0L85h%92 L~
0968061.2961L6W8L6959680€
0ngGeZgn LhEH90LELhG O LT68E~
2Eh11966260118N680T0GE6LE9E
hBEESEG0eINEhEI956GL22LENE092~
21699209165890E0E6060601996h L
08£828I682EIBLHEVGOBH6EB NN~
09816298.888168L2EL229089h9622
88998281/ LG0LTG8E62L60LhLENS29~

0

0021266846201
09L€10LE19L9N0E~

919 hZLELELHLOGES
0991648t 68095198~
hBGLLGGOL18€88216G081L
24921022£L00Lhee0L8he~
967MGLG2IELOE6NHGOGEEE
002£9L18666216L001£20691~
268L8EEHZBNEREI6868L068

hog2

216980~
009¢L02 2LiLegse
0202609 L~ whé622012L-
266720504061 2ENL619CG6
H066219L9G(1£6~ 2LLh9ghsges -
9£6911666888.2¢2 H0808L111102E

9€192/8060L166£€~ 00h2Z21L0hL96L~
06E2L9NE6861GheE 08heeeiLTLoe8
2LLiettices 199612~
WhGGE9/h22LINEZ0001 O
9€1999€2280L0LSLLZE-0thL9
0LBOEGELO6WZE6.69.89 082L19E~
00H90090L00WIE8HN68-9LL 15208

0£2L2hegi0206990969EhZL8RLL0CEL 266E01L99T66LH6L1LN666625E~ 009628006G6LLnGeENs 891912688~

04/8E8/96/105/hG06€GLLG6ELRBEE12-NI2EH6ECHLOH0EREE09G8THOL
0600ESELIELEONL0661L6/B1SGL90502 000H0L ELONG68008LG0ELLGE2~0
0000706228247 0L18920200060L£641-009922.08978802¢€5¢hL026€€ 02€009h2L

00026/84828(8LL9/0LL2LINELESGET  0009606H0HZE2LLLE60/HE961€-02986292591 -

0

0089E0LE1E8G6CL
09€662L.69£809049-
h9026L6€81L051621€99

2617869801 682E6R00L62~
91149660/198090/8L0066L
25616/200199. hhE682E0621
HOE0EE90040L660669185696hL
89LLGG0ERLEE0LERREIRESESEL -
9€GLE8602L18966£9704G85¢2Le8
2€02€€/GL8EhZLLB6ILRELEIILN-
9L18L08RGGEENSLEZ0LG2E6HENIL
HD6S6SELGSEZE0000L9L0L€80L0G-
91£6860280.0£889166928884961L 1
09¢ 6081689861 €E70829262hL9012~
00h8ORIHLELRLLOBZELE89€9€E2292
00000e616621 689685/ 108996202~
000HhG8BEI0CLILL999L861N6LEL

0096082059

Oh9GGL8L3E296L-
Oh8GLOLLIENE6S98Y
91006.9601290LL0LY-
2ZLh6889LGEEhELLTE09L
921960888¢€2h/869¢€LL9¢€~
09€/69662261L622LLELLGG
825h66168T89720L88LEERG-
BhHLEOL69212280969804645h
216222066168/ 80€12LLL.892
9G30NZ61£8GHNELE9EL92GHLeL
19H06868881£888G8LG2L690eN-
9LLGHNE1LGE890L6HECEOGOGOLL
09¢G0NLESLNZ6L08G2ELLoNhLE-
00£1L2GG6020LL265ROLLEESLZES
0009160696682.9092.8548t1 G2~
00088226269950h9h26.2188E01L

0008946h02£90962L1£08.¢8h

001909101

09LGthGEILEL=
0896L.49662692
02Lh18982929M691 -
09128687626£960¢8G
009¢L16£829L696986-
G6LLBR6ERTHLGIGHLLEL
066GLh1L0L0GEEGTLE6EROL -
GE8OGHNBINRONGHGLEESY
0BLGZ9/06082h9ELL6/662~
GL8hEZ8E0618/28L2L38LLOL
0£90£6989.602H9E6LL65hE~
GZGELELGOS00E669528601LT
0008806801 EGEEEELICLL2h-
00008780561 H19166951301L2

o]

0962002626
8h9L202£0126L -
GLN9LgLELOnGELL
8929¢£98.24088E2€E~
2£02LLIN665HESIING
008441 £92879£12609~
2L89LGLTLL612820Lh9h
©06L515290¢€n,hohehse-
SEGLSHN68T09EG922L66
82/2386266664.920869.2~
0092#7/6G11L20Le€60661G
0087080662004 LH8ELO9~
00802061 022602hme9.l2E

€ = NOISNIWIQ ' I
=== T300W

9LBOLOEHEG
0912L96ELIL-
09i2626eLLe
L 82£66£64692L i
h066LL0RL21Q9 L~ 9LRGL-
4292022406602 9821€9

H8LOLhENLELLLLLL- H9L6EH0OL -
096986141£206900L 0L921998
9L9L0hGZ6hH601EQE~ 0SLhLIGHE~
0t2282¢L0h406£066 025.208L4

00080051L£28869801 L~
002L7606964L5E096 0

aLge
00914 896101~
Qgh2gLege- 9€566¢81L
089¢819.61 06208~
912G61L8669- 02Lh69L1L
82L66620188cL
0h989LLON e~ 9L
28honL6LotyLi0L 826~
H19L618£9909 1691~ g6L1g
062/h8NG669LEL¢EL OhhE6 L~
009L18E0NLHBSGEE~ gottreg
0026L62€1L49991481

o]
0 96¢
©10L8h22 8094-
8041136002~ 9LGhe
9GhGENRLEhY
4h2eBR6L610QL- h
2G€9€94L4L66 96—
9£/0L1622L186~ 25t
02662£469£96902
00hheh9E6E261 - 0
00088842L0608¢ "9

f

NIWOW QNOD3S
¥Ianviay ---

(porunuon) | egeL

822/61/1-2-4



Nickel and Rehr

48

2L988100/h9.886428/56269L08/81L0¢L
he86hE1L6622h6806204 18220789085~
8086£029€4108161179.9952818201G¢ -
9LL169L1EE9078RRLNOENBH0L19£69¢
9€6E906hLTBERZON0ZELLE991L 70206~
9LI6L2GEE62L24G0296816L9L€9¢80L2-
9269.0%686206182H9M69EHL 991181
8899861 668L400GZE6E£8NB0NBEYSH~
ZLELGLLLLIZERR998L0EL86L0929L
887E06L LTGNEZ2E6100968902081L
HOL61G62G660E1980L8190EGHEH~
ZLEE62/ 19629281682/ 2G02E9L
969.€988/12G9¢809E2E9GLLLL
96266671£8206610L06606ELEe~
9G98EHE6H0L8L66L96008T~
H98HhaZE191L090092h665¢8L
hh6ees69ah92829.1262L 661~
hZ0LL50Mh 9062606189991~
H0L06L1G80E69L29E0905
0h8GL28L1686H9LLLESE
Ofiieeq/G89IENt/6860¢EN-
__808G//1689€02.£€226
hhGh8hEEEGGEG00800LHEG02299L~
896.2061Lh22C682869€LL280L 986/ -
9681£190892659960616€896996h8
968G221.8.2182612€9L16L692812~
B086E€2E6H.61.9828410.6L9268101~
200ECES0ECIGEIBECTNGIGRTLGENS
91700661 LELG0LLELLZE669E661LE-
09.6€629GNBGCLEECEGHROBISH
9L£€6060L21LhghZEeTLG05B6R0CL
2158890€/22L1816226£298862~
2E826618271e991LeL1l900E1L6
HBLEELZENI088GEIEHLL2HRE
89/¢1Gh91 962180281961~
021686/ 1£6L5900€609609¢€~
f816060.620206LE€5002LL
H989L626ELG2LIEGL 908 L
9406901 08005669816. L1~
960€1L6829Lhee/ 9L E6G
9EGLOOHOLENELILIEBE
82ELL7BLECBNEE20906~
9L69t8909h04 1262611

89L66LONTNERLHTBEE6568425LNE
2EQN6ENG6ZBI666E86191 L96H
GELELERZONNELE9KOLLLIECZ2) -

2662££689LLEDZHOL9B06LC2E MR-

0802220686hTMm84GL2166L5809¢¢
2181 Enh082LEL8GER06GBGL NG~
08262662h02986€20510990¢
888GELLEG8GLLOND6LEERGETL
0802hahGLESEL62T20EBLEBB L~
09682.929880.198€.2082h
821h06/20L£829061€62h8L
heg9L6h082261£9£69%5091 -
OhhElel/In82890. /82020~
08%2L6L9N0LLLESL900LY
Ohfr€680M6C28LE6LE6G) ~
08HILONBLOGNEGGHLEL -
266807C611G/80E€5864
286862£9686/09L¢8h
2L8E0LBL0G68L6TL6G~
2184686L089LGL LAY
02E8NBLS0INGLON2ELESCLB28I
©8.2en288HEG11.5921£5879-
he8Lloh9L6929n/28.L8682E12 -
8h085he02L0069.8885G1L L6601
9¢l26hLNlZLEChNi6ELG686NE~
GEESINMNLLBLIIZSHLGSELTL-
009£€92€GhcLRL8ELE616GLT
hOLL9E2614E15006L06862L L~
728LENLLEGLOBIEQIGhESL
96060L0806¢£2€0864.909
880696221060266¢5L19.2L-
0h22h08RGEZ6LIBLG LG~
02160872/4105.8198.29
H99606E00RG2EEILNTL -
9LO0LGL968ELE8GLG6L
0088<cLheh£8E09249
9£6EhL2.2829n2L6h
09629.00882hmh689-
H6LB8H60486EH1081
00h8L8 8Lt L1IGLLEh2LEGL
882W2LLELOGLCGECINGGGhEE-
2LEONGL2E6L0022169E90080¢
H99109/.890LHERGOILOGLL-
OWhEGZLEE2LLL29EG L9011~
WOhBL6EGLL0LGE.90L89202
8871 9666£9h6€06.829€09~
118.8£3066718665288880¢ -
hehehe06hNE0REGRILOTN
192£262N1621L20€96L96-

Oheh ON8L66L.881260-
21206.8h60902L 86994
9EEBGE6IGGNILLEHLY~
0872L£216L09226002~
821966248026LL189
89L9110£232£6£66G
26£E2GONEING1L66L-
8h2aB9cL866L 1G22

02/90hL6189L1861609092~
949 L£226G8ELEDL 229924
0hz208¢.8660084h6L.892~
89GLEEGLLGLLLLTONEEE Y-
H8.06166££82€£88692€E6
89GELLE8/0LGGEHIE0208
2L0G16206705€£€9668~
9ELHB00614L.12888190¢€
h20E66708822E626H0L~
2.8660868189£994¢H-
09625L56.082Lh10G
808LL6E69LLEIEHLY~
BBOSHEROLECL66E0E-
70€062060€0R1L9LL
h06160096EE1L9E9
8082hLELLaghZC6~
969011960 0182
961m086L1L1991748992L
2669L0L1ELGINEL28GLG-
8h0HENBLBONGI0E6966~
02€9€1L2BLGB0NB0LLLLE
B0Z06LCEE6LELESEEESL -
2L69099¢ELEEL8G6G06-
8H0BEL6LIGeHLELINEL
26186929/2086061 8t~
80900498412€9068/ ¢~
BhNR0CL1G8180Lheh
894 LKELEHOZ624G2ha -
BZ1l2a6E0eh98L202~
Oh92ZL0EC6L690HL
HIRIZEGRGRELED
h206989168¢ L6501~
__2£98802LEngL4¢E
60 L LhEGE6EE6E LT~
0967060166588.901 1~
89/9600M916562ER 0L
Ohhe12/€6€92820€9H~
002168660719E1L02h9-
h86L6099681102961 L
7012112661962860¢E~
Sh8e909NL0NLBLEE -
2LOEON8LELEEIENE
0912L6HL861€49h
n926ECe18shioL-
ZLE60h06586GG,
96891L1hLESRGL
HAENG6SE05G02L -
n0LLLGIM086EN

€ = NOISN3WIa ~°°

0009609292621212
8028L56690EhE9gnL
26£96£88059220901-
h (0209596085885~
2€99SH0£9€210£09
0896/92.1020628L-
171866696521 €2~
Th68££896.£8692
089E9HE9G0GLBE~
e ELRB9L999L -
ZLEGOELBLIGGL
gheile91Lols
0800/976519¢1 -
898€18651 605
2ehEntLGGoc8R2E
2LLGEELINE6E0NE-
2/£60601£62695! -
9090t18929££6/8
©0L9EL 1109256
008667502 L~
09€GLLLLELE66L
02£261012200€~
009LhZE6£92L1 -
9006508151 h.
9821961 L0.8
9/696£0.925L~
__9E191061189
h0610192£459
8hzee60685/29-
QONEGGIE8RESOL
962116565 LTGH-
261191699816~
#0/80K0ECLEEL
026116956612
26£886G2825L-
02.22¢1990L
0hZtr209106
7201926891~
__Z65hE6686E
92691181981
OnNL99/ 190Le
26686111891 -
21996G6ZE56-
9E1EN2L62E8
08092/G8L51-
0879161621 -
ShELECEE6T
9/£681226
§82020068L~
728LRLELOL

ALIT119114308NS

=== NVISSNyD 31dncd ---

026L681GLS
n28190HGEG-
18GE9EENLL-
896£89/ Lgh
0095295 £ 6-
92625h.20L-
821806186
RLL2969
950156861~

_®eLlizntl
9608859~
02L05169-
208E9HEEL
962470106~
082£6€97~
2616he6h
2116668
whize602-

__9tglli9n
2LEs6h
9¢6€L9y
70£958¢ -
021 L661-
000006€
zinshl
zsashie-

_ 2511602
ThG80 L

Al 2lqel



49

Series for Scalar-Field Lattice Models
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